Example #1
0
    def __init__(self,
                 split_type='cv',
                 partitions=10,
                 test_size=0.3,
                 seed=0,
                 fields=None):
        if fields is None:
            fields = ['X', 'Y']
        config = self._to_config(locals())

        # config cleaning.
        if split_type == "cv":
            del config['test_size']
        elif split_type == "loo":
            del config['partitions']
            del config['partition']
            del config['test']
            del config['seed']
        elif split_type == 'holdout':
            pass
        else:
            raise Exception('Wrong split_type: ', split_type)

        super().__init__(config)
        from pjml.macro import split
        self.transformer = Chain(
            Expand(), split(split_type, partitions, test_size, seed, fields))
Example #2
0
    def __mul__(self, other):
        from pjml.tool.chain import Chain
        from pjml.config.description.cs.chaincs import ChainCS

        if isinstance(other, (Chain, ChainCS)):
            return Chain(self, *other.components)
        if isinstance(self, (Chain, ChainCS)):
            return Chain(*self.components, other)
        return Chain(self, other)
    def __init__(self,
                 split_type: str = "cv",
                 partitions: int = 10,
                 test_size: float = 0.3,
                 seed: int = 0,
                 fields: str = "X,Y",
                 **kwargs):
        config = self._to_config(locals())

        # config cleaning.
        if split_type == "cv":
            del config["test_size"]
        elif split_type == "loo":
            del config["partitions"]
            del config["partition"]
            del config["test"]
            del config["seed"]
        elif split_type == "holdout":
            pass
        else:
            raise Exception("Wrong split_type: ", split_type)

        from pjml.macro import split

        self._component = Chain(
            Repeat(), split(split_type, partitions, test_size, seed, fields))
        super().__init__(config, **kwargs)
def printing_test(arq="iris.arff"):
    print(Chain(Map(select(File(arq)))))
    exp = Workflow(
        File(arq),
        Partition(),
        Map(PCA(), SVMC(), Metric(enhance=False)),
        Map(Report("<---------------------- fold"), enhance=False),
        Summ(function="mean", enhance=False),
        Reduce(),
        Report("mean ... S: $S", enhance=False),
    )
    print(exp)
    print(select(DT(), SVMC()))

    sel = select(DT(), SVMC())
    print(sel)
    print(Map(DT()))
    exp = ChainCS(
        File(arq),
        Partition(),
        Map(PCA(), select(SVMC(), DT(criterion="gini")),
            Metric(enhance=False)),
        Report("teste"),
        Map(Report("<---------------------- fold")),
    )
    print(exp)
 def __init__(
         self,
         split_type: str = "holdout",
         partitions: int = 2,
         partition: int = 0,
         test_size: float = 0.3,
         seed: int = 0,
         fields: str = "X,Y",
         **kwargs,
 ):
     config = self._to_config(locals())
     trsplit = TrSplit(
         split_type=split_type,
         partitions=partitions,
         partition=partition,
         test_size=test_size,
         seed=seed,
         fields=fields,
         **kwargs,
     )
     tssplit = TsSplit(
         split_type=split_type,
         partitions=partitions,
         partition=partition,
         test_size=test_size,
         seed=seed,
         fields=fields,
         **kwargs,
     )
     # HINT: Chain should be in the order below; otherwise, input data will differ for trsplit and tssplit.
     self._component = Chain(tssplit, trsplit)
     super().__init__(config, **kwargs)
Example #6
0
    def __init__(self, config, seed, transformers, deterministic):
        super().__init__(config, seed, transformers, deterministic)

        # Implementation-wise, Container1(Chain(a,b,c)) is needed to make
        # Container1(a,b,c) possible.
        if len(self.transformers) > 1:
            from pjml.tool.chain import Chain
            self.transformer = Chain(transformers=self.transformers)
        else:
            self.transformer = self.transformers[0]
Example #7
0
class Partition(HeavyTransformer):
    """Class to perform, e.g. Expand+kfoldCV.

    This task is already done by function split(),
    but if performance becomes a concern, this less modular solution is a
    good choice.

    TODO: the current implementation is just an alias for the nonoptimized
        previous solution.
    """
    def __init__(self,
                 split_type='cv',
                 partitions=10,
                 test_size=0.3,
                 seed=0,
                 fields=None):
        if fields is None:
            fields = ['X', 'Y']
        config = self._to_config(locals())

        # config cleaning.
        if split_type == "cv":
            del config['test_size']
        elif split_type == "loo":
            del config['partitions']
            del config['partition']
            del config['test']
            del config['seed']
        elif split_type == 'holdout':
            pass
        else:
            raise Exception('Wrong split_type: ', split_type)

        super().__init__(config)
        from pjml.macro import split
        self.transformer = Chain(
            Expand(), split(split_type, partitions, test_size, seed, fields))

    def _apply_impl(self, data):
        splitter_model = self.transformer.apply(data)
        applied = splitter_model.data.last_transformations_replaced(
            drop=self.transformer.size,
            transformation=self.transformations('a')[0])

        return Model(self, data, applied, splitter_model=splitter_model)

    def _use_impl(self, data, splitter_model=None):
        used = splitter_model.use(data)
        return used.last_transformations_replaced(
            drop=self.transformer.size,
            transformation=self.transformations('u')[0])

    @classmethod
    def _cs_impl(cls):
        raise NotImplementedError
Example #8
0
    def __init__(self, config, enhancer_cls, model_cls, seed, components,
                 enhance, model, deterministic):
        super().__init__(config, enhancer_cls, model_cls, seed, components,
                         enhance, model, deterministic)

        # Implementation-wise, Container1(Chain(a,b,c)) is needed to make
        # Container1(a,b,c) possible.
        if len(self.components) > 1:
            from pjml.tool.chain import Chain

            self.component = Chain(components=self.components)
        else:
            self.component = self.components[0]
Example #9
0
    OnlyUse(Calc(functions=['flatten'])),
    OnlyUse(Report('flatten S ... S: $S')),
    OnlyUse(Calc(functions=['mean'])),
    OnlyUse(Report('mean S ... S: $S')),
    Report('End ...\n'),
)

# diversidade,
# Lambda(function='$R[0][0] * $R[0][1]', field='r')

print('sample .................')
pipe = full(rnd(expr, n=5), field='S', n=1).sample()

#
# pipes = rnd(expr, n=5)
#
# magia = Multi(pipes) -> Diversity() -> Agrega()
# magia.apply()
# coll = magia.use()
#
# pipe = full(pipes, field='S', n=1).sample()

print('apply .................')
data = Workflow(File("abalone3.arff"), Binarize()).apply().data

c = Chain(pipe.wrapped, Report())
model = c.apply(data)

print('use .................')
dataout = model.use(data)
Example #10
0
 def sample(self):
     import numpy as np
     from pjml.tool.chain import Chain
     css = self.components.copy()
     np.random.shuffle(css)
     return Chain(transformers=[cs.sample() for cs in css])
    def sample(self):
        components = [cs.sample() for cs in self.components]
        from pjml.tool.chain import Chain

        return Chain(components=components)
Example #12
0
    ),
    Metric(functions=['accuracy'])
    )
    )
)



# {history.last.config['function']}
print(expr)
print('sample .................')
pipe = full(rnd(expr, n=10), field='S').sample()
pipe.enable_pretty_printing()
print(f'Pipe:\n{pipe}')
print(f'Wrapped:\n{pipe.unwrap}')
pipe = Chain(File('abalone3.arff'), Binarize(), Split(), pipe.unwrap,
             Metric(), Report())

print('apply .................')
model = pipe.apply()

# print(222222222222222, dataout.history)
# data morre no apply() do predictor


print('use .................')


# print(3333333333333333, dataout.history)
# RUS desaparece no use()

exit(0)
Example #13
0
 def sample(self):
     transformers = [cs.sample() for cs in self.components]
     from pjml.tool.chain import Chain
     return Chain(transformers=transformers)
def evaluator(*components, function="mean_std", **validation_args):
    return Chain(Partition(**validation_args), Map(components=components),
                 Summ(function=function))
Example #15
0
def evaluator(*components, function='mean_std', **validation_args):
    return Chain(Partition(**validation_args), Map(transformers=components),
                 Summ(function=function))