Example #1
0
    def GetSuggestions(self, request, context):
        """
        Main function to provide suggestion.
        """
        algorithm_name, config = OptimizerConfiguration.convertAlgorithmSpec(
            request.experiment.spec.algorithm)
        if algorithm_name != "bayesianoptimization":
            raise Exception(
                "Failed to create the algorithm: {}".format(algorithm_name))

        if self.is_first_run:
            search_space = HyperParameterSearchSpace.convert(
                request.experiment)
            self.base_service = BaseSkoptService(
                base_estimator=config.base_estimator,
                n_initial_points=config.n_initial_points,
                acq_func=config.acq_func,
                acq_optimizer=config.acq_optimizer,
                random_state=config.random_state,
                search_space=search_space)
            self.is_first_run = False

        trials = Trial.convert(request.trials)
        new_trials = self.base_service.getSuggestions(trials,
                                                      request.request_number)
        return api_pb2.GetSuggestionsReply(
            parameter_assignments=Assignment.generate(new_trials))
Example #2
0
 def GetSuggestions(self, request, context):
     """
     Main function to provide suggestion.
     """
     base_serice = BaseChocolateService(
         algorithm_name=request.experiment.spec.algorithm.algorithm_name)
     search_space = HyperParameterSearchSpace.convert(request.experiment)
     trials = Trial.convert(request.trials)
     new_assignments = base_serice.getSuggestions(search_space, trials,
                                                  request.request_number)
     return api_pb2.GetSuggestionsReply(
         parameter_assignments=Assignment.generate(new_assignments))
Example #3
0
 def GetSuggestions(self, request, context):
     """
     Main function to provide suggestion.
     """
     name, config = OptimizerConfiguration.convertAlgorithmSpec(
         request.experiment.spec.algorithm)
     base_serice = BaseHyperoptService(
         algorithm_name=name, random_state=config.random_state)
     search_space = HyperParameterSearchSpace.convert(request.experiment)
     trials = Trial.convert(request.trials)
     new_assignments = base_serice.getSuggestions(
         search_space, trials, request.request_number)
     return api_pb2.GetSuggestionsReply(
         parameter_assignments=Assignment.generate(new_assignments)
     )
Example #4
0
    def GetSuggestions(self, request, context):
        """
        Main function to provide suggestion.
        """
        name, config = OptimizerConfiguration.convert_algorithm_spec(
            request.experiment.spec.algorithm)

        if self.is_first_run:
            search_space = HyperParameterSearchSpace.convert(request.experiment)
            self.base_service = BaseHyperoptService(
                algorithm_name=name,
                algorithm_conf=config,
                search_space=search_space)
            self.is_first_run = False

        trials = Trial.convert(request.trials)
        new_assignments = self.base_service.getSuggestions(trials, request.request_number)
        return api_pb2.GetSuggestionsReply(
            parameter_assignments=Assignment.generate(new_assignments)
        )