def eval_Taylor(P, R, mbar, alpha_x, x): """My function description here.""" if (P % 2 == 0): T0 = 2 * np.pi else: T0 = 1 * np.pi A = pl.dist(1, P + 1, R, dist_type_x='Taylor', mbar=mbar, alpha_x=alpha_x) x, result = IFS(A, T0, m_start=-P / 2, m_stop=P / 2, x_min=x, x_max=x, x_num=1) # if(P%2==0): # A = pl.dist(1, P + 1, R, dist_type_x='Taylor', mbar=mbar, alpha_x=alpha_x) # x, result = IFS(A, T0=2*np.pi, m_start= -P / 2, m_stop=P / 2, x_min=x, x_max=x, x_num=1) # else: # A = pl.dist(1, 2*P + 1, R, dist_type_x='Taylor', mbar=mbar, alpha_x=alpha_x) # x, result = IFS(A, T0=1*np.pi, m_start= -P, m_stop=P, x_min=x, x_max=x, x_num=1) result = result[0, 0].real return result
def eval_Bayliss(P, R, mbar, alpha_x, x): """My function description here.""" if(P%2==0): print "Order needs to be an ODD number for null patterns" else: T0=1*np.pi A = pl.dist(1, P + 1, R, dist_type_x='Bayliss', mbar=mbar, alpha_x=alpha_x) x, result = IFS(A, T0, m_start= -P / 2, m_stop=P / 2, x_min=x, x_max=x, x_num=1) result = result[0,0].imag return result
def eval_Bayliss(P, R, mbar, alpha_x, x): """My function description here.""" if (P % 2 == 0): print("Order needs to be an ODD number for null patterns") else: T0 = 1 * np.pi A = pl.dist(1, P + 1, R, dist_type_x='Bayliss', mbar=mbar, alpha_x=alpha_x) x, result = IFS(A, T0, m_start=-P / 2, m_stop=P / 2, x_min=x, x_max=x, x_num=1) result = result[0, 0].imag return result
def eval_Taylor(P, R, mbar, alpha_x, x): """My function description here.""" if(P%2==0): T0 = 2*np.pi else: T0=1*np.pi A = pl.dist(1, P + 1, R, dist_type_x='Taylor', mbar=mbar, alpha_x=alpha_x) x, result = IFS(A, T0, m_start= -P / 2, m_stop=P / 2, x_min=x, x_max=x, x_num=1) # if(P%2==0): # A = pl.dist(1, P + 1, R, dist_type_x='Taylor', mbar=mbar, alpha_x=alpha_x) # x, result = IFS(A, T0=2*np.pi, m_start= -P / 2, m_stop=P / 2, x_min=x, x_max=x, x_num=1) # else: # A = pl.dist(1, 2*P + 1, R, dist_type_x='Taylor', mbar=mbar, alpha_x=alpha_x) # x, result = IFS(A, T0=1*np.pi, m_start= -P, m_stop=P, x_min=x, x_max=x, x_num=1) result = result[0,0].real return result