"T", "uu", "uv", "uw", "vv", "vw", "ww", "Q-criterion", "L2-criterion", "gradp", ] timezone = np.arange(700, 999.75 + 0.25, 0.25) x1x2 = [700, 1000] StepHeight = 3.0 MeanFlow = pf() #MeanFlow.load_data(path + 'inca_out/') MeanFlow.load_meanflow(path) MeanFlow.add_walldist(StepHeight) # %% Load laminar data for comparison path1 = "/media/weibo/VID2/BFS_M1.7L/MeanFlow/" MeanFlowL = pf() MeanFlowL.load_meanflow(path) MeanFlowL.add_walldist(StepHeight) # %%############################################################################ """ boundary layer profile along streamwise direction """ # %% plot BL profile along streamwise
"y", "z", "u", "v", "w", "rho", "p", "T", "Q-criterion", "L2-criterion", ] StepHeight = 3.0 # %% MeanFlow = pf() MeanFlow.load_meanflow(path) MeanFlow.add_walldist(StepHeight) stat = MeanFlow.PlanarData # %%############################################################################ """ save coordinates of bubble line & max fluctuations points """ # %% save dividing line coordinates dividing = np.loadtxt(pathM + "BubbleLine.dat", skiprows=1)[:-2, :] x2 = np.arange(dividing[-1, 0], 50.0+0.125, 0.125) y2 = np.ones(np.size(x2))*(-2.99342) x3 = np.concatenate((dividing[:,0], x2), axis=0) y3 = np.concatenate((dividing[:,1], y2), axis=0) # streamline xx = np.zeros(np.size(x3))
pathT = path + "TimeAve/" pathI = path + "Instant/" pathV = path + "Vortex/" pathSL = path + "Slice/" matplotlib.rcParams["xtick.direction"] = "out" matplotlib.rcParams["ytick.direction"] = "out" textsize = 13 numsize = 10 matplotlib.rc("font", size=textsize) # %% Load Data for time- spanwise-averaged results # filter files FileId = pd.read_csv(path + "StatList.dat", sep='\t') filelist = FileId['name'].to_list() pltlist = [os.path.join(path + 'TP_stat/', name) for name in filelist] MeanFlow = pf() MeanFlow.load_meanflow(path, FileList=pltlist) # %% Load Data for time- spanwise-averaged results MeanFlow = pf() MeanFlow.load_meanflow(path) x, y = np.meshgrid(np.unique(MeanFlow.x), np.unique(MeanFlow.y)) corner = (x < 0.0) & (y < 0.0) # %%############################################################################ """ Examination of the computational mesh """ # %% check mesh temp = MeanFlow.PlanarData[['x', 'y']] df = temp.query("x>=-5.0 & x<=5.0 & y>=-3.0 & y<=1.0")
font = { "family": "Times New Roman", # 'color' : 'k', "weight": "normal", "size": "large", } matplotlib.rcParams["xtick.direction"] = "in" matplotlib.rcParams["ytick.direction"] = "in" textsize = 13 numsize = 10 # %%############################################################################ ### ### load data ### StepHeight = 3.0 MeanFlow0 = pf() MeanFlow0.load_meanflow(path0) MeanFlow0.add_walldist(StepHeight) MeanFlow1 = pf() MeanFlow1.load_meanflow(path1) MeanFlow1.add_walldist(StepHeight) MeanFlow2 = pf() MeanFlow2.load_meanflow(path2) MeanFlow2.add_walldist(StepHeight) MeanFlow3 = pf() MeanFlow3.load_meanflow(path3) MeanFlow3.add_walldist(StepHeight) # %%############################################################################ ### ### skin friction & pressure coefficiency/turbulent kinetic energy along streamwise