Example #1
0
def _get_nhl(qes1, qes2, cls_ivfs, lmax_out, cls_ivfs_bb=None, cls_ivfs_ab=None, ret_terms=False):
    GG_N0 = np.zeros(lmax_out + 1, dtype=float)
    CC_N0 = np.zeros(lmax_out + 1, dtype=float)
    GC_N0 = np.zeros(lmax_out + 1, dtype=float)
    CG_N0 = np.zeros(lmax_out + 1, dtype=float)

    cls_ivfs_aa = cls_ivfs
    cls_ivfs_bb = cls_ivfs if cls_ivfs_bb is None else cls_ivfs_bb
    cls_ivfs_ab = cls_ivfs if cls_ivfs_ab is None else cls_ivfs_ab
    cls_ivfs_ba = cls_ivfs_ab
    if ret_terms:
        terms = []
    for qe1 in qes1:
        cL1 = qe1.cL(np.arange(lmax_out + 1))
        for qe2 in qes2:
            cL2 = qe2.cL(np.arange(lmax_out + 1))
            si, ti, ui, vi = (qe1.leg_a.spin_in, qe1.leg_b.spin_in, qe2.leg_a.spin_in, qe2.leg_b.spin_in)
            so, to, uo, vo = (qe1.leg_a.spin_ou, qe1.leg_b.spin_ou, qe2.leg_a.spin_ou, qe2.leg_b.spin_ou)
            assert so + to >= 0 and uo + vo >= 0, (so, to, uo, vo)

            clsu = utils.joincls([qe1.leg_a.cl, qe2.leg_a.cl.conj(), uspin.spin_cls(si, ui, cls_ivfs_aa)])
            cltv = utils.joincls([qe1.leg_b.cl, qe2.leg_b.cl.conj(), uspin.spin_cls(ti, vi, cls_ivfs_bb)])
            R_sutv = utils.joincls([uspin.wignerc(clsu, cltv, so, uo, to, vo, lmax_out=lmax_out), cL1, cL2])

            clsv = utils.joincls([qe1.leg_a.cl, qe2.leg_b.cl.conj(), uspin.spin_cls(si, vi, cls_ivfs_ab)])
            cltu = utils.joincls([qe1.leg_b.cl, qe2.leg_a.cl.conj(), uspin.spin_cls(ti, ui, cls_ivfs_ba)])
            R_sutv = R_sutv + utils.joincls([uspin.wignerc(clsv, cltu, so, vo, to, uo, lmax_out=lmax_out), cL1, cL2])

            # we now need -s-t uv
            sgnms = (-1) ** (si + so)
            sgnmt = (-1) ** (ti + to)
            clsu = utils.joincls([sgnms * qe1.leg_a.cl.conj(), qe2.leg_a.cl.conj(), uspin.spin_cls(-si, ui, cls_ivfs_aa)])
            cltv = utils.joincls([sgnmt * qe1.leg_b.cl.conj(), qe2.leg_b.cl.conj(), uspin.spin_cls(-ti, vi, cls_ivfs_bb)])
            R_msmtuv = utils.joincls([uspin.wignerc(clsu, cltv, -so, uo, -to, vo, lmax_out=lmax_out), cL1, cL2])

            clsv = utils.joincls([sgnms * qe1.leg_a.cl.conj(), qe2.leg_b.cl.conj(), uspin.spin_cls(-si, vi, cls_ivfs_ab)])
            cltu = utils.joincls([sgnmt * qe1.leg_b.cl.conj(), qe2.leg_a.cl.conj(), uspin.spin_cls(-ti, ui, cls_ivfs_ba)])
            R_msmtuv = R_msmtuv + utils.joincls([uspin.wignerc(clsv, cltu, -so, vo, -to, uo, lmax_out=lmax_out), cL1, cL2])

            GG_N0 +=  0.5 * R_sutv.real
            GG_N0 +=  0.5 * (-1) ** (to + so) * R_msmtuv.real

            CC_N0 += 0.5 * R_sutv.real
            CC_N0 -= 0.5 * (-1) ** (to + so) * R_msmtuv.real

            GC_N0 -= 0.5 * R_sutv.imag
            GC_N0 -= 0.5 * (-1) ** (to + so) * R_msmtuv.imag

            CG_N0 += 0.5 * R_sutv.imag
            CG_N0 -= 0.5 * (-1) ** (to + so) * R_msmtuv.imag
            if ret_terms:
                terms += [0.5 * R_sutv, 0.5 * (-1) ** (to + so) * R_msmtuv]
    return (GG_N0, CC_N0, GC_N0, CG_N0) if not ret_terms else (GG_N0, CC_N0, GC_N0, CG_N0, terms)
Example #2
0
def get_covresp(source, s1, s2, cls, lmax):
    r"""Defines the responses terms for a CMB covariance anisotropy source.

        \delta < s_d(n) _td^*(n')> \equiv
        _r\alpha(n) W^{r, st}_l _{s - r}Y_{lm}(n) _tY^*_{lm}(n') +
        _r\alpha^*(n') W^{r, ts}_l _{s}Y_{lm}(n) _{t-r}Y^*_{lm}(n')

    """
    if source in ['p','x', 'f', 'a', 'a_p']:
        # Lensing, modulation, or pol. rotation field from the field representation
        s_source, prR, mrR, cL_scal = get_resp_legs(source, lmax)[s1]
        coupl = uspin.spin_cls(s1, s2, cls)[:lmax + 1]
        return s_source, prR * coupl, mrR * coupl, cL_scal
    elif source in ['stt', 's']:
        # Point source 'S^2': Cov -> Cov + B delta_nn' S^2(n) B^\dagger on the diagonal.
        # From the def. there are actually 4 identical W terms hence a factor 1/4.
        cond = s1 == 0 and s2 == 0
        s_source = 0
        prR = 0.25 * cond * np.ones(lmax + 1, dtype=float)
        mrR = 0.25 * cond * np.ones(lmax + 1, dtype=float)
        cL_scal =  lambda ell : np.ones(len(ell), dtype=float)
        return s_source, prR, mrR, cL_scal
    else:
        assert 0, 'source ' + source + ' cov. response not implemented'
Example #3
0
def get_mf_resp(qe_key, cls_cmb, cls_ivfs, lmax_qe, lmax_out):
    """Deflection-induced mean-field response calculation.

    See Carron & Lewis 2019 in prep.
    """
    # This version looks stable enough
    assert qe_key in ['p_p', 'ptt'], qe_key

    GL = np.zeros(lmax_out + 1, dtype=float)
    CL = np.zeros(lmax_out + 1, dtype=float)
    if qe_key == 'ptt':
        lmax_cmb = len(cls_cmb['tt']) - 1
        spins = [0]
    elif qe_key == 'p_p':
        lmax_cmb = min(len(cls_cmb['ee']) - 1, len(cls_cmb['bb'] - 1))
        spins = [-2, 2]
    elif qe_key == 'p':
        lmax_cmb = min(len(cls_cmb['ee']) - 1, len(cls_cmb['bb']) - 1, len(cls_cmb['tt']) - 1, len(cls_cmb['te']) - 1)
        spins = [0, -2, 2]
    else:
        assert 0, qe_key + ' not implemented'
    assert lmax_qe <= lmax_cmb
    if qe_key == 'ptt':
        cl_cmbtoticmb = {'tt': cls_cmb['tt'][:lmax_qe + 1] ** 2 * cls_ivfs['tt'][:lmax_qe + 1]}
        cl_cmbtoti = {'tt': cls_cmb['tt'][:lmax_qe + 1] * cls_ivfs['tt'][:lmax_qe + 1]}
    elif qe_key == 'p_p':
        cl_cmbtoticmb = {'ee': cls_cmb['ee'][:lmax_qe + 1] ** 2 * cls_ivfs['ee'][:lmax_qe + 1],
                         'bb': cls_cmb['bb'][:lmax_qe + 1] ** 2 * cls_ivfs['bb'][:lmax_qe + 1]}
        cl_cmbtoti = {'ee': cls_cmb['ee'][:lmax_qe + 1] * cls_ivfs['ee'][:lmax_qe + 1],
                      'bb': cls_cmb['bb'][:lmax_qe + 1] * cls_ivfs['bb'][:lmax_qe + 1]}
    else:
        assert 0, 'not implemented'
    # Build remaining fisher term II:
    FisherGII = np.zeros(lmax_out + 1, dtype=float)
    FisherCII = np.zeros(lmax_out + 1, dtype=float)

    for s1 in spins:
        for s2 in spins:
            cl1 = uspin.spin_cls(s1, s2, cls_ivfs)[:lmax_qe + 1] * (0.5 ** (s1 != 0) * 0.5 ** (s2 != 0))
            # These 1/2 factor from the factor 1/2 in each B of B Covi B^dagger, where B maps spin-fields to T E B.
            cl2 = np.copy(uspin.spin_cls(s2, s1, cls_cmb)[:lmax_cmb + 1])
            cl2[:lmax_qe + 1] -= uspin.spin_cls(s2, s1, cl_cmbtoticmb)[:lmax_qe + 1]
            if np.any(cl1) and np.any(cl2):
                for a in [-1, 1]:
                    ai = uspin.get_spin_lower(s2, lmax_cmb) if a == - 1 else uspin.get_spin_raise(s2, lmax_cmb)
                    for b in [1]: # a, b symmetry
                        aj = uspin.get_spin_lower(-s1, lmax_cmb) if b == 1 else uspin.get_spin_raise(-s1, lmax_cmb)
                        hL = 2 * (-1) ** (s1 + s2) * uspin.wignerc(cl1, cl2 * ai * aj, s2, s1, -s2 - a, -s1 - b, lmax_out=lmax_out)
                        GL += (- a * b) * hL
                        CL += (-1) * hL

    # Build remaining Fisher term II:
    for s1 in spins:
        for s2 in spins:
            cl1 = uspin.spin_cls(s2, s1, cl_cmbtoti)[:lmax_qe + 1] * (0.5 ** (s1 != 0))
            cl2 = uspin.spin_cls(s1, s2, cl_cmbtoti)[:lmax_qe + 1] * (0.5 ** (s2 != 0))
            if np.any(cl1) and np.any(cl2):
                for a in [-1, 1]:
                    ai = uspin.get_spin_lower(s2, lmax_qe) if a == -1 else uspin.get_spin_raise(s2, lmax_qe)
                    for b in [1]:
                        aj = uspin.get_spin_lower(s1, lmax_qe) if b == 1 else uspin.get_spin_raise(s1, lmax_qe)
                        hL = 2 * (-1) ** (s1 + s2) * uspin.wignerc(cl1 * ai, cl2 * aj, -s2 - a, -s1, s2, s1 - b, lmax_out=lmax_out)
                        FisherGII += (- a * b) * hL
                        FisherCII += (-1) * hL
    GL -= FisherGII
    CL -= FisherCII
    print("CL[1] ",CL[1])
    print("GL[1] (before subtraction) ", GL[1])
    print("GL[1] (after subtraction) ", GL[1] - CL[1])

    GL -= CL[1]
    CL -= CL[1]
    GL *= 0.25 * np.arange(lmax_out + 1) * np.arange(1, lmax_out + 2)
    CL *= 0.25 * np.arange(lmax_out + 1) * np.arange(1, lmax_out + 2)
    return GL, CL