def test_plantcv_logical_and(): img1 = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) img2 = np.copy(img1) device, and_img = pcv.logical_and(img1=img1, img2=img2, device=0, debug=None) assert all([i == j] for i, j in zip(np.shape(and_img), TEST_BINARY_DIM))
def main(): # Get options args = options() # Read image img, path, filename = pcv.readimage(args.image) # Pipeline step device = 0 # Convert RGB to HSV and extract the Saturation channel device, s = pcv.rgb2gray_hsv(img, 's', device, args.debug) # Threshold the Saturation image device, s_thresh = pcv.binary_threshold(s, 36, 255, 'light', device, args.debug) # Median Filter device, s_mblur = pcv.median_blur(s_thresh, 0, device, args.debug) device, s_cnt = pcv.median_blur(s_thresh, 0, device, args.debug) # Fill small objects #device, s_fill = pcv.fill(s_mblur, s_cnt, 0, device, args.debug) # Convert RGB to LAB and extract the Blue channel device, b = pcv.rgb2gray_lab(img, 'b', device, args.debug) # Threshold the blue image device, b_thresh = pcv.binary_threshold(b, 137, 255, 'light', device, args.debug) device, b_cnt = pcv.binary_threshold(b, 137, 255, 'light', device, args.debug) # Fill small objects #device, b_fill = pcv.fill(b_thresh, b_cnt, 10, device, args.debug) # Join the thresholded saturation and blue-yellow images device, bs = pcv.logical_and(s_mblur, b_cnt, device, args.debug) # Apply Mask (for vis images, mask_color=white) device, masked = pcv.apply_mask(img, bs, 'white', device, args.debug) # Convert RGB to LAB and extract the Green-Magenta and Blue-Yellow channels device, masked_a = pcv.rgb2gray_lab(masked, 'a', device, args.debug) device, masked_b = pcv.rgb2gray_lab(masked, 'b', device, args.debug) # Threshold the green-magenta and blue images device, maskeda_thresh = pcv.binary_threshold(masked_a, 127, 255, 'dark', device, args.debug) device, maskedb_thresh = pcv.binary_threshold(masked_b, 128, 255, 'light', device, args.debug) # Join the thresholded saturation and blue-yellow images (OR) device, ab = pcv.logical_or(maskeda_thresh, maskedb_thresh, device, args.debug) device, ab_cnt = pcv.logical_or(maskeda_thresh, maskedb_thresh, device, args.debug) # Fill small noise device, ab_fill1 = pcv.fill(ab, ab_cnt, 2, device, args.debug) # Dilate to join small objects with larger ones device, ab_cnt1 = pcv.dilate(ab_fill1, 3, 2, device, args.debug) device, ab_cnt2 = pcv.dilate(ab_fill1, 3, 2, device, args.debug) # Fill dilated image mask device, ab_cnt3 = pcv.fill(ab_cnt2, ab_cnt1, 150, device, args.debug) img2 = np.copy(img) device, masked2 = pcv.apply_mask(img2, ab_cnt3, 'white', device, args.debug) # Convert RGB to LAB and extract the Green-Magenta and Blue-Yellow channels device, masked2_a = pcv.rgb2gray_lab(masked2, 'a', device, args.debug) device, masked2_b = pcv.rgb2gray_lab(masked2, 'b', device, args.debug) # Threshold the green-magenta and blue images device, masked2a_thresh = pcv.binary_threshold(masked2_a, 127, 255, 'dark', device, args.debug) device, masked2b_thresh = pcv.binary_threshold(masked2_b, 128, 255, 'light', device, args.debug) device, ab_fill = pcv.logical_or(masked2a_thresh, masked2b_thresh, device, args.debug) # Identify objects device, id_objects, obj_hierarchy = pcv.find_objects( masked2, ab_fill, device, args.debug) # Define ROI device, roi1, roi_hierarchy = pcv.define_roi(masked2, 'rectangle', device, None, 'default', args.debug, True, 550, 10, -600, -907) # Decide which objects to keep device, roi_objects, hierarchy3, kept_mask, obj_area = pcv.roi_objects( img, 'partial', roi1, roi_hierarchy, id_objects, obj_hierarchy, device, args.debug) # Object combine kept objects device, obj, mask = pcv.object_composition(img, roi_objects, hierarchy3, device, args.debug) ############## Landmarks ################ device, points = pcv.acute_vertex(obj, 40, 40, 40, img, device, args.debug) boundary_line = 900 # Use acute fxn to estimate tips device, points_r, centroid_r, bline_r = pcv.scale_features( obj, mask, points, boundary_line, device, args.debug) # Get number of points tips = len(points_r) # Use turgor_proxy fxn to get distances device, vert_ave_c, hori_ave_c, euc_ave_c, ang_ave_c, vert_ave_b, hori_ave_b, euc_ave_b, ang_ave_b = pcv.turgor_proxy( points_r, centroid_r, bline_r, device, args.debug) # Get pseudomarkers along the y-axis device, left, right, center_h = pcv.y_axis_pseudolandmarks( obj, mask, img, device, args.debug) # Re-scale the points device, left_r, left_cr, left_br = pcv.scale_features( obj, mask, left, boundary_line, device, args.debug) device, right_r, right_cr, right_br = pcv.scale_features( obj, mask, right, boundary_line, device, args.debug) device, center_hr, center_hcr, center_hbr = pcv.scale_features( obj, mask, center_h, boundary_line, device, args.debug) # Get pseudomarkers along the x-axis device, top, bottom, center_v = pcv.x_axis_pseudolandmarks( obj, mask, img, device, args.debug) # Re-scale the points device, top_r, top_cr, top_br = pcv.scale_features(obj, mask, top, boundary_line, device, args.debug) device, bottom_r, bottom_cr, bottom_br = pcv.scale_features( obj, mask, bottom, boundary_line, device, args.debug) device, center_vr, center_vcr, center_vbr = pcv.scale_features( obj, mask, center_v, boundary_line, device, args.debug) ## Need to convert the points into a list of tuples format to match the scaled points points = points.reshape(len(points), 2) points = points.tolist() temp_out = [] for p in points: p = tuple(p) temp_out.append(p) points = temp_out left = left.reshape(20, 2) left = left.tolist() temp_out = [] for l in left: l = tuple(l) temp_out.append(l) left = temp_out right = right.reshape(20, 2) right = right.tolist() temp_out = [] for r in right: r = tuple(r) temp_out.append(r) right = temp_out center_h = center_h.reshape(20, 2) center_h = center_h.tolist() temp_out = [] for ch in center_h: ch = tuple(ch) temp_out.append(ch) center_h = temp_out ## Need to convert the points into a list of tuples format to match the scaled points top = top.reshape(20, 2) top = top.tolist() temp_out = [] for t in top: t = tuple(t) temp_out.append(t) top = temp_out bottom = bottom.reshape(20, 2) bottom = bottom.tolist() temp_out = [] for b in bottom: b = tuple(b) temp_out.append(b) bottom = temp_out center_v = center_v.reshape(20, 2) center_v = center_v.tolist() temp_out = [] for cvr in center_v: cvr = tuple(cvr) temp_out.append(cvr) center_v = temp_out #Store Landmark Data landmark_header = ('HEADER_LANDMARK', 'tip_points', 'tip_points_r', 'centroid_r', 'baseline_r', 'tip_number', 'vert_ave_c', 'hori_ave_c', 'euc_ave_c', 'ang_ave_c', 'vert_ave_b', 'hori_ave_b', 'euc_ave_b', 'ang_ave_b', 'left_lmk', 'right_lmk', 'center_h_lmk', 'left_lmk_r', 'right_lmk_r', 'center_h_lmk_r', 'top_lmk', 'bottom_lmk', 'center_v_lmk', 'top_lmk_r', 'bottom_lmk_r', 'center_v_lmk_r') landmark_data = ('LANDMARK_DATA', points, points_r, centroid_r, bline_r, tips, vert_ave_c, hori_ave_c, euc_ave_c, ang_ave_c, vert_ave_b, hori_ave_b, euc_ave_b, ang_ave_b, left, right, center_h, left_r, right_r, center_hr, top, bottom, center_v, top_r, bottom_r, center_vr) ############## VIS Analysis ################ outfile = False #if args.writeimg==True: #outfile=args.outdir+"/"+filename # Find shape properties, output shape image (optional) device, shape_header, shape_data, shape_img = pcv.analyze_object( img, args.image, obj, mask, device, args.debug, outfile) # Shape properties relative to user boundary line (optional) device, boundary_header, boundary_data, boundary_img1 = pcv.analyze_bound( img, args.image, obj, mask, 935, device, args.debug, outfile) # Determine color properties: Histograms, Color Slices and Pseudocolored Images, output color analyzed images (optional) device, color_header, color_data, color_img = pcv.analyze_color( img, args.image, mask, 256, device, args.debug, None, 'v', 'img', 300, outfile) # Output shape and color data result = open(args.result, "a") result.write('\t'.join(map(str, shape_header))) result.write("\n") result.write('\t'.join(map(str, shape_data))) result.write("\n") for row in shape_img: result.write('\t'.join(map(str, row))) result.write("\n") result.write('\t'.join(map(str, color_header))) result.write("\n") result.write('\t'.join(map(str, color_data))) result.write("\n") result.write('\t'.join(map(str, boundary_header))) result.write("\n") result.write('\t'.join(map(str, boundary_data))) result.write("\n") result.write('\t'.join(map(str, boundary_img1))) result.write("\n") for row in color_img: result.write('\t'.join(map(str, row))) result.write("\n") result.write('\t'.join(map(str, landmark_header))) result.write("\n") result.write('\t'.join(map(str, landmark_data))) result.write("\n") result.close()
def back_for_ground_sub(img, sliders): args = options() debug = args.debug stop = 0 sat_thresh = 85 blue_thresh = 135 green_magenta_dark_thresh = 117 green_magenta_light_thresh = 180 blue_yellow_thresh = 128 def nothing(x): pass if sliders == True: Stop = np.zeros((100, 512, 3), np.uint8) cv2.namedWindow('Saturation', cv2.WINDOW_NORMAL) cv2.namedWindow('Blue', cv2.WINDOW_NORMAL) cv2.namedWindow('Green_magenta_dark', cv2.WINDOW_NORMAL) cv2.namedWindow('Green_magenta_light', cv2.WINDOW_NORMAL) cv2.namedWindow('Blue_yellow_light', cv2.WINDOW_NORMAL) cv2.namedWindow('Stop') cv2.createTrackbar('sat_thresh', 'Saturation', 85, 255, nothing) cv2.createTrackbar('blue_thresh', 'Blue', 135, 255, nothing) cv2.createTrackbar('green_magenta_dark_thresh', 'Green_magenta_dark', 117, 255, nothing) cv2.createTrackbar('green_magenta_light_thresh', 'Green_magenta_light', 180, 255, nothing) cv2.createTrackbar('blue_yellow_thresh', 'Blue_yellow_light', 128, 255, nothing) cv2.createTrackbar('stop', 'Stop', 0, 1, nothing) while (stop == 0): if sliders == True: # get current positions of five trackbars sat_thresh = cv2.getTrackbarPos('sat_thresh', 'Saturation') blue_thresh = cv2.getTrackbarPos('blue_thresh', 'Blue') green_magenta_dark_thresh = cv2.getTrackbarPos('green_magenta_dark_thresh', 'Green_magenta_dark') green_magenta_light_thresh = cv2.getTrackbarPos('green_magenta_light_thresh', 'Green_magenta_light') blue_yellow_thresh = cv2.getTrackbarPos('blue_yellow_thresh', 'Blue_yellow_light') # Pipeline step device = 0 # Convert RGB to HSV and extract the Saturation channel # Extract the light and dark form the image device, s = pcv.rgb2gray_hsv(img, 's', device) # device, s_thresh = pcv.binary_threshold(s, sat_thresh, 255, 'light', device) device, s_thresh = pcv.otsu_auto_threshold(s, 255, 'light', device, debug="plot") device, s_mblur = pcv.median_blur(s_thresh, 5, device) device, s_cnt = pcv.median_blur(s_thresh, 5, device) # Convert RGB to LAB and extract the Blue channel # Threshold the blue image # Combine the threshed saturation and the blue theshed image with the logical or device, b = pcv.rgb2gray_lab(img, 'b', device) device, b_thresh = pcv.otsu_auto_threshold(b, 255, 'light', device, debug="plot") device, b_cnt = pcv.otsu_auto_threshold(b, 255, 'light', device, debug="plot") device, b_cnt_2 = pcv.binary_threshold(b, 135, 255, 'light', device, debug="plot") device, bs = pcv.logical_or(s_mblur, b_cnt, device) # Mask the original image with the theshed combination of the blue&saturation device, masked = pcv.apply_mask(img, bs, 'white', device, debug="plot") # Convert RGB to LAB and extract the Green-Magenta and Blue-Yellow channels device, masked_a = pcv.rgb2gray_lab(masked, 'a', device) device, masked_b = pcv.rgb2gray_lab(masked, 'b', device) # Focus on capturing the plant from the masked image 'masked' # Extract plant green-magenta and blue-yellow channels # Channels are threshold to cap different portions of the plant # Threshold the green-magenta and blue images # Images joined together # device, maskeda_thresh = pcv.binary_threshold(masked_a, 115, 255, 'dark', device) device, maskeda_thresh = pcv.binary_threshold(masked_a, green_magenta_dark_thresh, 255, 'dark', device, debug="plot") # Original 115 New 125 device, maskeda_thresh1 = pcv.binary_threshold(masked_a, green_magenta_light_thresh, 255, 'light', device, debug="plot") # Original 135 New 170 device, maskedb_thresh = pcv.binary_threshold(masked_b, blue_yellow_thresh, 255, 'light', device, debug="plot") # Original 150`, New 165 device, maskeda_thresh2 = pcv.binary_threshold(masked_a, green_magenta_dark_thresh, 255, 'dark', device, debug="plot") # Original 115 New 125 # Join the thresholded saturation and blue-yellow images (OR) device, ab1 = pcv.logical_or(maskeda_thresh, maskedb_thresh, device, debug="plot") device, ab = pcv.logical_or(maskeda_thresh1, ab1, device, debug="plot") device, ab_cnt = pcv.logical_or(maskeda_thresh1, ab1, device, debug="plot") device, ab_cnt_2 = pcv.logical_and(b_cnt_2, maskeda_thresh2, device, debug="plot") # Fill small objects device, ab_fill = pcv.fill(ab, ab_cnt, 200, device, debug="plot") # Original 200 New: 120 # Apply mask (for vis images, mask_color=white) device, masked2 = pcv.apply_mask(masked, ab_fill, 'white', device, debug="plot") device, masked3 = pcv.apply_mask(masked, ab_cnt_2, 'white', device, debug="plot") # Identify objects device, id_objects, obj_hierarchy = pcv.find_objects(masked2, ab_fill, device, debug="plot") # Define ROI # Plant extracton done----------------------------------------------------------------------------------- if sliders == True: stop = cv2.getTrackbarPos('stop', 'Stop') cv2.imshow('Stop', Stop) cv2.imshow('Saturation', s_thresh) cv2.imshow('Blue', b_thresh) cv2.imshow('Green_magenta_dark', maskeda_thresh) cv2.imshow('Green_magenta_light', maskeda_thresh1) cv2.imshow('Blue_yellow_light', maskedb_thresh) cv2.imshow('Mask', masked) cv2.imshow('Mask2', masked2) cv2.imshow('Mask3', masked3) cv2.imshow('masked_a', masked_a) cv2.imshow('masked_b', masked_b) cv2.imshow('fill', ab_fill) cv2.imshow('ab_cnt', ab) cv2.imshow('ab1', ab1) cv2.imshow('ab_cnt2', ab_cnt_2) k = cv2.waitKey(1) & 0xFF if k == 27: break else: stop = 1 device, roi1, roi_hierarchy = pcv.define_roi(masked2, 'rectangle', device, roi=None, roi_input='default', debug=False, adjust=True, x_adj=100, y_adj=50, w_adj=-150, h_adj=-50) # Decide which objects to keep device, roi_objects, hierarchy3, kept_mask, obj_area = pcv.roi_objects(img, 'partial', roi1, roi_hierarchy, id_objects, obj_hierarchy, device, debug=False) # Object combine kept objects device, obj, mask = pcv.object_composition(img, roi_objects, hierarchy3, device, debug=False) return device, ab_fill, mask, obj
def main(): # Get options args = options() # Read image img, path, filename = pcv.readimage(args.image) brass_mask = cv2.imread(args.roi) # Pipeline step device = 0 # Convert RGB to HSV and extract the Saturation channel device, s = pcv.rgb2gray_hsv(img, 's', device, args.debug) # Threshold the Saturation image device, s_thresh = pcv.binary_threshold(s, 49, 255, 'light', device, args.debug) # Median Filter device, s_mblur = pcv.median_blur(s_thresh, 5, device, args.debug) device, s_cnt = pcv.median_blur(s_thresh, 5, device, args.debug) # Fill small objects device, s_fill = pcv.fill(s_mblur, s_cnt, 150, device, args.debug) # Convert RGB to LAB and extract the Blue channel device, b = pcv.rgb2gray_lab(img, 'b', device, args.debug) # Threshold the blue image device, b_thresh = pcv.binary_threshold(b, 138, 255, 'light', device, args.debug) device, b_cnt = pcv.binary_threshold(b, 138, 255, 'light', device, args.debug) # Fill small objects device, b_fill = pcv.fill(b_thresh, b_cnt, 100, device, args.debug) # Join the thresholded saturation and blue-yellow images device, bs = pcv.logical_and(s_fill, b_fill, device, args.debug) # Apply Mask (for vis images, mask_color=white) device, masked = pcv.apply_mask(img, bs,'white', device, args.debug) # Mask pesky brass piece device, brass_mask1 = pcv.rgb2gray_hsv(brass_mask, 'v', device, args.debug) device, brass_thresh = pcv.binary_threshold(brass_mask1, 0, 255, 'light', device, args.debug) device, brass_inv=pcv.invert(brass_thresh, device, args.debug) device, brass_masked = pcv.apply_mask(masked, brass_inv, 'white', device, args.debug) # Further mask soil and car device, masked_a = pcv.rgb2gray_lab(brass_masked, 'a', device, args.debug) device, soil_car = pcv.binary_threshold(masked_a, 128, 255, 'dark', device, args.debug) device, soil_masked = pcv.apply_mask(brass_masked, soil_car, 'white', device, args.debug) # Convert RGB to LAB and extract the Green-Magenta and Blue-Yellow channels device, soil_a = pcv.rgb2gray_lab(soil_masked, 'a', device, args.debug) device, soil_b = pcv.rgb2gray_lab(soil_masked, 'b', device, args.debug) # Threshold the green-magenta and blue images device, soila_thresh = pcv.binary_threshold(soil_a, 118, 255, 'dark', device, args.debug) device, soilb_thresh = pcv.binary_threshold(soil_b, 155, 255, 'light', device, args.debug) # Join the thresholded saturation and blue-yellow images (OR) device, soil_ab = pcv.logical_or(soila_thresh, soilb_thresh, device, args.debug) device, soil_ab_cnt = pcv.logical_or(soila_thresh, soilb_thresh, device, args.debug) # Fill small objects device, soil_fill = pcv.fill(soil_ab, soil_ab_cnt, 75, device, args.debug) # Median Filter device, soil_mblur = pcv.median_blur(soil_fill, 5, device, args.debug) device, soil_cnt = pcv.median_blur(soil_fill, 5, device, args.debug) # Apply mask (for vis images, mask_color=white) device, masked2 = pcv.apply_mask(soil_masked, soil_cnt, 'white', device, args.debug) # Identify objects device, id_objects,obj_hierarchy = pcv.find_objects(masked2, soil_cnt, device, args.debug) # Define ROI device, roi1, roi_hierarchy= pcv.define_roi(img,'circle', device, None, 'default', args.debug,True, 0,0,-50,-50) # Decide which objects to keep device,roi_objects, hierarchy3, kept_mask, obj_area = pcv.roi_objects(img,'partial',roi1,roi_hierarchy,id_objects,obj_hierarchy,device, args.debug) # Object combine kept objects device, obj, mask = pcv.object_composition(img, roi_objects, hierarchy3, device, args.debug) ############## Analysis ################ # Find shape properties, output shape image (optional) device, shape_header,shape_data,shape_img = pcv.analyze_object(img, args.image, obj, mask, device,args.debug,args.outdir+'/'+filename) # Determine color properties: Histograms, Color Slices and Pseudocolored Images, output color analyzed images (optional) device, color_header,color_data,color_img= pcv.analyze_color(img, args.image, kept_mask, 256, device, args.debug,'all','v','img',300,args.outdir+'/'+filename) # Output shape and color data pcv.print_results(args.image, shape_header, shape_data) pcv.print_results(args.image, color_header, color_data)
def main(): # Get options args = options() # Read image img, path, filename = pcv.readimage(args.image) # Pipeline step device = 0 # Convert RGB to HSV and extract the Saturation channel device, s = pcv.rgb2gray_hsv(img, "s", device, args.debug) # Threshold the Saturation image device, s_thresh = pcv.binary_threshold(s, 36, 255, "light", device, args.debug) # Median Filter device, s_mblur = pcv.median_blur(s_thresh, 0, device, args.debug) device, s_cnt = pcv.median_blur(s_thresh, 0, device, args.debug) # Fill small objects # device, s_fill = pcv.fill(s_mblur, s_cnt, 0, device, args.debug) # Convert RGB to LAB and extract the Blue channel device, b = pcv.rgb2gray_lab(img, "b", device, args.debug) # Threshold the blue image device, b_thresh = pcv.binary_threshold(b, 137, 255, "light", device, args.debug) device, b_cnt = pcv.binary_threshold(b, 137, 255, "light", device, args.debug) # Fill small objects # device, b_fill = pcv.fill(b_thresh, b_cnt, 10, device, args.debug) # Join the thresholded saturation and blue-yellow images device, bs = pcv.logical_and(s_mblur, b_cnt, device, args.debug) # Apply Mask (for vis images, mask_color=white) device, masked = pcv.apply_mask(img, bs, "white", device, args.debug) # Convert RGB to LAB and extract the Green-Magenta and Blue-Yellow channels device, masked_a = pcv.rgb2gray_lab(masked, "a", device, args.debug) device, masked_b = pcv.rgb2gray_lab(masked, "b", device, args.debug) # Threshold the green-magenta and blue images device, maskeda_thresh = pcv.binary_threshold(masked_a, 127, 255, "dark", device, args.debug) device, maskedb_thresh = pcv.binary_threshold(masked_b, 128, 255, "light", device, args.debug) # Join the thresholded saturation and blue-yellow images (OR) device, ab = pcv.logical_or(maskeda_thresh, maskedb_thresh, device, args.debug) device, ab_cnt = pcv.logical_or(maskeda_thresh, maskedb_thresh, device, args.debug) # Fill small noise device, ab_fill1 = pcv.fill(ab, ab_cnt, 2, device, args.debug) # Dilate to join small objects with larger ones device, ab_cnt1 = pcv.dilate(ab_fill1, 3, 2, device, args.debug) device, ab_cnt2 = pcv.dilate(ab_fill1, 3, 2, device, args.debug) # Fill dilated image mask device, ab_cnt3 = pcv.fill(ab_cnt2, ab_cnt1, 150, device, args.debug) device, masked2 = pcv.apply_mask(masked, ab_cnt3, "white", device, args.debug) # Convert RGB to LAB and extract the Green-Magenta and Blue-Yellow channels device, masked2_a = pcv.rgb2gray_lab(masked2, "a", device, args.debug) device, masked2_b = pcv.rgb2gray_lab(masked2, "b", device, args.debug) # Threshold the green-magenta and blue images device, masked2a_thresh = pcv.binary_threshold(masked2_a, 127, 255, "dark", device, args.debug) device, masked2b_thresh = pcv.binary_threshold(masked2_b, 128, 255, "light", device, args.debug) device, ab_fill = pcv.logical_or(masked2a_thresh, masked2b_thresh, device, args.debug) # Identify objects device, id_objects, obj_hierarchy = pcv.find_objects(masked2, ab_fill, device, args.debug) # Define ROI device, roi1, roi_hierarchy = pcv.define_roi( masked2, "rectangle", device, None, "default", args.debug, True, 500, 0, -600, -885 ) # Decide which objects to keep device, roi_objects, hierarchy3, kept_mask, obj_area = pcv.roi_objects( img, "partial", roi1, roi_hierarchy, id_objects, obj_hierarchy, device, args.debug ) # Object combine kept objects device, obj, mask = pcv.object_composition(img, roi_objects, hierarchy3, device, args.debug) ############## VIS Analysis ################ outfile = False if args.writeimg == True: outfile = args.outdir + "/" + filename # Find shape properties, output shape image (optional) device, shape_header, shape_data, shape_img = pcv.analyze_object( img, args.image, obj, mask, device, args.debug, outfile ) # Shape properties relative to user boundary line (optional) device, boundary_header, boundary_data, boundary_img1 = pcv.analyze_bound( img, args.image, obj, mask, 845, device, args.debug, outfile ) # Determine color properties: Histograms, Color Slices and Pseudocolored Images, output color analyzed images (optional) device, color_header, color_data, color_img = pcv.analyze_color( img, args.image, mask, 256, device, args.debug, None, "v", "img", 300, outfile ) # Output shape and color data result = open(args.result, "a") result.write("\t".join(map(str, shape_header))) result.write("\n") result.write("\t".join(map(str, shape_data))) result.write("\n") for row in shape_img: result.write("\t".join(map(str, row))) result.write("\n") result.write("\t".join(map(str, color_header))) result.write("\n") result.write("\t".join(map(str, color_data))) result.write("\n") result.write("\t".join(map(str, boundary_header))) result.write("\n") result.write("\t".join(map(str, boundary_data))) result.write("\n") result.write("\t".join(map(str, boundary_img1))) result.write("\n") for row in color_img: result.write("\t".join(map(str, row))) result.write("\n") result.close() ############################# Use VIS image mask for NIR image######################### # Find matching NIR image device, nirpath = pcv.get_nir(path, filename, device, args.debug) nir, path1, filename1 = pcv.readimage(nirpath) nir2 = cv2.imread(nirpath, -1) # Flip mask device, f_mask = pcv.flip(mask, "vertical", device, args.debug) # Reize mask device, nmask = pcv.resize(f_mask, 0.1304, 0.1304, device, args.debug) # position, and crop mask device, newmask = pcv.crop_position_mask(nir, nmask, device, 65, 0, "top", "left", args.debug) # Identify objects device, nir_objects, nir_hierarchy = pcv.find_objects(nir, newmask, device, args.debug) # Object combine kept objects device, nir_combined, nir_combinedmask = pcv.object_composition(nir, nir_objects, nir_hierarchy, device, args.debug) ####################################### Analysis ############################################# outfile1 = False if args.writeimg == True: outfile1 = args.outdir + "/" + filename1 device, nhist_header, nhist_data, nir_imgs = pcv.analyze_NIR_intensity( nir2, filename1, nir_combinedmask, 256, device, False, args.debug, outfile1 ) device, nshape_header, nshape_data, nir_shape = pcv.analyze_object( nir2, filename1, nir_combined, nir_combinedmask, device, args.debug, outfile1 ) coresult = open(args.coresult, "a") coresult.write("\t".join(map(str, nhist_header))) coresult.write("\n") coresult.write("\t".join(map(str, nhist_data))) coresult.write("\n") for row in nir_imgs: coresult.write("\t".join(map(str, row))) coresult.write("\n") coresult.write("\t".join(map(str, nshape_header))) coresult.write("\n") coresult.write("\t".join(map(str, nshape_data))) coresult.write("\n") coresult.write("\t".join(map(str, nir_shape))) coresult.write("\n") coresult.close()
def main(): # Get options args = options() # Read image img, path, filename = pcv.readimage(args.image) #roi = cv2.imread(args.roi) # Pipeline step device = 0 # Convert RGB to HSV and extract the Saturation channel device, s = pcv.rgb2gray_hsv(img, 's', device, args.debug) # Threshold the Saturation image device, s_thresh = pcv.binary_threshold(s, 34, 255, 'light', device, args.debug) # Median Filter #device, s_mblur = pcv.median_blur(s_thresh, 0, device, args.debug) #device, s_cnt = pcv.median_blur(s_thresh, 0, device, args.debug) # Fill small objects #device, s_fill = pcv.fill(s_mblur, s_cnt, 0, device, args.debug) # Convert RGB to LAB and extract the Blue channel device, b = pcv.rgb2gray_lab(img, 'b', device, args.debug) # Threshold the blue image device, b_thresh = pcv.binary_threshold(b, 138, 255, 'light', device, args.debug) device, b_cnt = pcv.binary_threshold(b, 138, 255, 'light', device, args.debug) # Fill small objects device, b_fill = pcv.fill(b_thresh, b_cnt, 150, device, args.debug) # Join the thresholded saturation and blue-yellow images device, bs = pcv.logical_and(s_thresh, b_fill, device, args.debug) # Apply Mask (for vis images, mask_color=white) device, masked = pcv.apply_mask(img, bs, 'white', device, args.debug) # Convert RGB to LAB and extract the Green-Magenta and Blue-Yellow channels device, masked_a = pcv.rgb2gray_lab(masked, 'a', device, args.debug) device, masked_b = pcv.rgb2gray_lab(masked, 'b', device, args.debug) # Threshold the green-magenta and blue images device, maskeda_thresh = pcv.binary_threshold(masked_a, 122, 255, 'dark', device, args.debug) device, maskedb_thresh = pcv.binary_threshold(masked_b, 133, 255, 'light', device, args.debug) # Join the thresholded saturation and blue-yellow images (OR) device, ab = pcv.logical_or(maskeda_thresh, maskedb_thresh, device, args.debug) device, ab_cnt = pcv.logical_or(maskeda_thresh, maskedb_thresh, device, args.debug) # Fill small objects device, ab_fill = pcv.fill(ab, ab_cnt, 200, device, args.debug) # Apply mask (for vis images, mask_color=white) device, masked2 = pcv.apply_mask(masked, ab_fill, 'white', device, args.debug) # Select area with black bars and find overlapping plant material device, roi1, roi_hierarchy1 = pcv.define_roi(masked2, 'rectangle', device, None, 'default', args.debug, True, 0, 0, -1700, 0) device, id_objects1, obj_hierarchy1 = pcv.find_objects( masked2, ab_fill, device, args.debug) device, roi_objects1, hierarchy1, kept_mask1, obj_area1 = pcv.roi_objects( masked2, 'cutto', roi1, roi_hierarchy1, id_objects1, obj_hierarchy1, device, args.debug) device, masked3 = pcv.apply_mask(masked2, kept_mask1, 'white', device, args.debug) device, masked_a1 = pcv.rgb2gray_lab(masked3, 'a', device, args.debug) device, masked_b1 = pcv.rgb2gray_lab(masked3, 'b', device, args.debug) device, maskeda_thresh1 = pcv.binary_threshold(masked_a1, 110, 255, 'dark', device, args.debug) device, maskedb_thresh1 = pcv.binary_threshold(masked_b1, 170, 255, 'light', device, args.debug) device, ab1 = pcv.logical_or(maskeda_thresh1, maskedb_thresh1, device, args.debug) device, ab_cnt1 = pcv.logical_or(maskeda_thresh1, maskedb_thresh1, device, args.debug) device, ab_fill1 = pcv.fill(ab1, ab_cnt1, 300, device, args.debug) device, roi2, roi_hierarchy2 = pcv.define_roi(masked2, 'rectangle', device, None, 'default', args.debug, True, 1700, 0, 0, 0) device, id_objects2, obj_hierarchy2 = pcv.find_objects( masked2, ab_fill, device, args.debug) device, roi_objects2, hierarchy2, kept_mask2, obj_area2 = pcv.roi_objects( masked2, 'cutto', roi2, roi_hierarchy2, id_objects2, obj_hierarchy2, device, args.debug) device, masked4 = pcv.apply_mask(masked2, kept_mask2, 'white', device, args.debug) device, masked_a2 = pcv.rgb2gray_lab(masked4, 'a', device, args.debug) device, masked_b2 = pcv.rgb2gray_lab(masked4, 'b', device, args.debug) device, maskeda_thresh2 = pcv.binary_threshold(masked_a2, 110, 255, 'dark', device, args.debug) device, maskedb_thresh2 = pcv.binary_threshold(masked_b2, 170, 255, 'light', device, args.debug) device, ab2 = pcv.logical_or(maskeda_thresh2, maskedb_thresh2, device, args.debug) device, ab_cnt2 = pcv.logical_or(maskeda_thresh2, maskedb_thresh2, device, args.debug) device, ab_fill2 = pcv.fill(ab2, ab_cnt2, 200, device, args.debug) device, ab_cnt3 = pcv.logical_or(ab_fill1, ab_fill2, device, args.debug) device, masked3 = pcv.apply_mask(masked2, ab_cnt3, 'white', device, args.debug) # Identify objects device, id_objects3, obj_hierarchy3 = pcv.find_objects( masked2, ab_fill, device, args.debug) # Define ROI device, roi3, roi_hierarchy3 = pcv.define_roi(masked2, 'rectangle', device, None, 'default', args.debug, True, 650, 0, -450, -300) # Decide which objects to keep and combine with objects overlapping with black bars device, roi_objects3, hierarchy3, kept_mask3, obj_area1 = pcv.roi_objects( img, 'cutto', roi3, roi_hierarchy3, id_objects3, obj_hierarchy3, device, args.debug) device, kept_mask4_1 = pcv.logical_or(ab_cnt3, kept_mask3, device, args.debug) device, kept_cnt = pcv.logical_or(ab_cnt3, kept_mask3, device, args.debug) device, kept_mask4 = pcv.fill(kept_mask4_1, kept_cnt, 200, device, args.debug) device, masked5 = pcv.apply_mask(masked2, kept_mask4, 'white', device, args.debug) device, id_objects4, obj_hierarchy4 = pcv.find_objects( masked5, kept_mask4, device, args.debug) device, roi4, roi_hierarchy4 = pcv.define_roi(masked2, 'rectangle', device, None, 'default', args.debug, False, 0, 0, 0, 0) device, roi_objects4, hierarchy4, kept_mask4, obj_area = pcv.roi_objects( img, 'partial', roi4, roi_hierarchy4, id_objects4, obj_hierarchy4, device, args.debug) # Object combine kept objects device, obj, mask = pcv.object_composition(img, roi_objects4, hierarchy4, device, args.debug) ############## Analysis ################ # Find shape properties, output shape image (optional) device, shape_header, shape_data, shape_img = pcv.analyze_object( img, args.image, obj, mask, device, args.debug, args.outdir + '/' + filename) # Shape properties relative to user boundary line (optional) device, boundary_header, boundary_data, boundary_img1 = pcv.analyze_bound( img, args.image, obj, mask, 375, device, args.debug, args.outdir + '/' + filename) # Determine color properties: Histograms, Color Slices and Pseudocolored Images, output color analyzed images (optional) device, color_header, color_data, norm_slice = pcv.analyze_color( img, args.image, kept_mask4, 256, device, args.debug, 'all', 'rgb', 'v', 'img', 300, args.outdir + '/' + filename) # Output shape and color data pcv.print_results(args.image, shape_header, shape_data) pcv.print_results(args.image, color_header, color_data) pcv.print_results(args.image, boundary_header, boundary_data)
def main(): # Get options args = options() # Read image img, path, filename = pcv.readimage(args.image) # Pipeline step device = 0 # Convert RGB to HSV and extract the Saturation channel device, s = pcv.rgb2gray_hsv(img, 's', device, args.debug) # Threshold the Saturation image device, s_thresh = pcv.binary_threshold(s, 36, 255, 'light', device, args.debug) # Median Filter device, s_mblur = pcv.median_blur(s_thresh, 0, device, args.debug) device, s_cnt = pcv.median_blur(s_thresh, 0, device, args.debug) # Fill small objects #device, s_fill = pcv.fill(s_mblur, s_cnt, 0, device, args.debug) # Convert RGB to LAB and extract the Blue channel device, b = pcv.rgb2gray_lab(img, 'b', device, args.debug) # Threshold the blue image device, b_thresh = pcv.binary_threshold(b, 137, 255, 'light', device, args.debug) device, b_cnt = pcv.binary_threshold(b, 137, 255, 'light', device, args.debug) # Fill small objects #device, b_fill = pcv.fill(b_thresh, b_cnt, 10, device, args.debug) # Join the thresholded saturation and blue-yellow images device, bs = pcv.logical_and(s_mblur, b_cnt, device, args.debug) # Apply Mask (for vis images, mask_color=white) device, masked = pcv.apply_mask(img, bs, 'white', device, args.debug) # Convert RGB to LAB and extract the Green-Magenta and Blue-Yellow channels device, masked_a = pcv.rgb2gray_lab(masked, 'a', device, args.debug) device, masked_b = pcv.rgb2gray_lab(masked, 'b', device, args.debug) # Threshold the green-magenta and blue images device, maskeda_thresh = pcv.binary_threshold(masked_a, 127, 255, 'dark', device, args.debug) device, maskedb_thresh = pcv.binary_threshold(masked_b, 128, 255, 'light', device, args.debug) # Join the thresholded saturation and blue-yellow images (OR) device, ab = pcv.logical_or(maskeda_thresh, maskedb_thresh, device, args.debug) device, ab_cnt = pcv.logical_or(maskeda_thresh, maskedb_thresh, device, args.debug) # Fill small noise device, ab_fill1 = pcv.fill(ab, ab_cnt, 2, device, args.debug) # Dilate to join small objects with larger ones device, ab_cnt1=pcv.dilate(ab_fill1, 3, 2, device, args.debug) device, ab_cnt2=pcv.dilate(ab_fill1, 3, 2, device, args.debug) # Fill dilated image mask device, ab_cnt3=pcv.fill(ab_cnt2,ab_cnt1,150,device,args.debug) device, masked2 = pcv.apply_mask(masked, ab_cnt3, 'white', device, args.debug) # Convert RGB to LAB and extract the Green-Magenta and Blue-Yellow channels device, masked2_a = pcv.rgb2gray_lab(masked2, 'a', device, args.debug) device, masked2_b = pcv.rgb2gray_lab(masked2, 'b', device, args.debug) # Threshold the green-magenta and blue images device, masked2a_thresh = pcv.binary_threshold(masked2_a, 127, 255, 'dark', device, args.debug) device, masked2b_thresh = pcv.binary_threshold(masked2_b, 128, 255, 'light', device, args.debug) device, ab_fill = pcv.logical_or(masked2a_thresh, masked2b_thresh, device, args.debug) # Identify objects device, id_objects,obj_hierarchy = pcv.find_objects(masked2, ab_fill, device, args.debug) # Define ROI device, roi1, roi_hierarchy= pcv.define_roi(masked2,'rectangle', device, None, 'default', args.debug,True, 525, 0,-490,-150) # Decide which objects to keep device,roi_objects, hierarchy3, kept_mask, obj_area = pcv.roi_objects(img,'partial',roi1,roi_hierarchy,id_objects,obj_hierarchy,device, args.debug) # Object combine kept objects device, obj, mask = pcv.object_composition(img, roi_objects, hierarchy3, device, args.debug) ############## VIS Analysis ################ outfile=False if args.writeimg==True: outfile=args.outdir+"/"+filename # Find shape properties, output shape image (optional) device, shape_header,shape_data,shape_img = pcv.analyze_object(img, args.image, obj, mask, device,args.debug,outfile) # Shape properties relative to user boundary line (optional) device, boundary_header,boundary_data, boundary_img1= pcv.analyze_bound(img, args.image,obj, mask, 325, device,args.debug,outfile) # Determine color properties: Histograms, Color Slices and Pseudocolored Images, output color analyzed images (optional) device, color_header,color_data,color_img= pcv.analyze_color(img, args.image, mask, 256, device, args.debug,None,'v','img',300,outfile) # Output shape and color data result=open(args.result,"a") result.write('\t'.join(map(str,shape_header))) result.write("\n") result.write('\t'.join(map(str,shape_data))) result.write("\n") for row in shape_img: result.write('\t'.join(map(str,row))) result.write("\n") result.write('\t'.join(map(str,color_header))) result.write("\n") result.write('\t'.join(map(str,color_data))) result.write("\n") result.write('\t'.join(map(str,boundary_header))) result.write("\n") result.write('\t'.join(map(str,boundary_data))) result.write("\n") result.write('\t'.join(map(str,boundary_img1))) result.write("\n") for row in color_img: result.write('\t'.join(map(str,row))) result.write("\n") result.close()
def main(): # Get options args = options() # Read image img, path, filename = pcv.readimage(args.image) #roi = cv2.imread(args.roi) # Pipeline step device = 0 # Convert RGB to HSV and extract the Saturation channel device, s = pcv.rgb2gray_hsv(img, 's', device, args.debug) # Threshold the Saturation image device, s_thresh = pcv.binary_threshold(s, 36, 255, 'light', device, args.debug) # Median Filter device, s_mblur = pcv.median_blur(s_thresh, 5, device, args.debug) device, s_cnt = pcv.median_blur(s_thresh, 5, device, args.debug) # Fill small objects device, s_fill = pcv.fill(s_mblur, s_cnt, 0, device, args.debug) # Convert RGB to LAB and extract the Blue channel device, b = pcv.rgb2gray_lab(img, 'b', device, args.debug) # Threshold the blue image device, b_thresh = pcv.binary_threshold(b, 138, 255, 'light', device, args.debug) device, b_cnt = pcv.binary_threshold(b, 138, 255, 'light', device, args.debug) # Fill small objects device, b_fill = pcv.fill(b_thresh, b_cnt, 150, device, args.debug) # Join the thresholded saturation and blue-yellow images device, bs = pcv.logical_and(s_fill, b_fill, device, args.debug) # Apply Mask (for vis images, mask_color=white) device, masked = pcv.apply_mask(img, bs, 'white', device, args.debug) # Convert RGB to LAB and extract the Green-Magenta and Blue-Yellow channels device, masked_a = pcv.rgb2gray_lab(masked, 'a', device, args.debug) device, masked_b = pcv.rgb2gray_lab(masked, 'b', device, args.debug) # Threshold the green-magenta and blue images device, maskeda_thresh = pcv.binary_threshold(masked_a, 122, 255, 'dark', device, args.debug) device, maskedb_thresh = pcv.binary_threshold(masked_b, 133, 255, 'light', device, args.debug) # Join the thresholded saturation and blue-yellow images (OR) device, ab = pcv.logical_or(maskeda_thresh, maskedb_thresh, device, args.debug) device, ab_cnt = pcv.logical_or(maskeda_thresh, maskedb_thresh, device, args.debug) # Fill small objects device, ab_fill = pcv.fill(ab, ab_cnt, 200, device, args.debug) # Apply mask (for vis images, mask_color=white) device, masked2 = pcv.apply_mask(masked, ab_fill, 'white', device, args.debug) # Select area with black bars and find overlapping plant material device, roi1, roi_hierarchy1= pcv.define_roi(masked2,'rectangle', device, None, 'default', args.debug,True, 0, 0,-1900,0) device, id_objects1,obj_hierarchy1 = pcv.find_objects(masked2, ab_fill, device, args.debug) device,roi_objects1, hierarchy1, kept_mask1, obj_area1 = pcv.roi_objects(masked2,'cutto',roi1,roi_hierarchy1,id_objects1,obj_hierarchy1,device, args.debug) device, masked3 = pcv.apply_mask(masked2, kept_mask1, 'white', device, args.debug) device, masked_a1 = pcv.rgb2gray_lab(masked3, 'a', device, args.debug) device, masked_b1 = pcv.rgb2gray_lab(masked3, 'b', device, args.debug) device, maskeda_thresh1 = pcv.binary_threshold(masked_a1, 122, 255, 'dark', device, args.debug) device, maskedb_thresh1 = pcv.binary_threshold(masked_b1, 170, 255, 'light', device, args.debug) device, ab1 = pcv.logical_or(maskeda_thresh1, maskedb_thresh1, device, args.debug) device, ab_cnt1 = pcv.logical_or(maskeda_thresh1, maskedb_thresh1, device, args.debug) device, ab_fill1 = pcv.fill(ab1, ab_cnt1, 300, device, args.debug) device, roi2, roi_hierarchy2= pcv.define_roi(masked2,'rectangle', device, None, 'default', args.debug,True, 1900, 0,0,0) device, id_objects2,obj_hierarchy2 = pcv.find_objects(masked2, ab_fill, device, args.debug) device,roi_objects2, hierarchy2, kept_mask2, obj_area2 = pcv.roi_objects(masked2,'cutto',roi2,roi_hierarchy2,id_objects2,obj_hierarchy2,device, args.debug) device, masked4 = pcv.apply_mask(masked2, kept_mask2, 'white', device, args.debug) device, masked_a2 = pcv.rgb2gray_lab(masked4, 'a', device, args.debug) device, masked_b2 = pcv.rgb2gray_lab(masked4, 'b', device, args.debug) device, maskeda_thresh2 = pcv.binary_threshold(masked_a2, 122, 255, 'dark', device, args.debug) device, maskedb_thresh2 = pcv.binary_threshold(masked_b2, 170, 255, 'light', device, args.debug) device, ab2 = pcv.logical_or(maskeda_thresh2, maskedb_thresh2, device, args.debug) device, ab_cnt2 = pcv.logical_or(maskeda_thresh2, maskedb_thresh2, device, args.debug) device, ab_fill2 = pcv.fill(ab2, ab_cnt2, 200, device, args.debug) device, ab_cnt3 = pcv.logical_or(ab_fill1, ab_fill2, device, args.debug) device, masked3 = pcv.apply_mask(masked2, ab_cnt3, 'white', device, args.debug) # Identify objects device, id_objects3,obj_hierarchy3 = pcv.find_objects(masked2, ab_fill, device, args.debug) # Define ROI device, roi3, roi_hierarchy3= pcv.define_roi(masked2,'rectangle', device, None, 'default', args.debug,True, 500, 0,-450,-530) # Decide which objects to keep and combine with objects overlapping with black bars device,roi_objects3, hierarchy3, kept_mask3, obj_area1 = pcv.roi_objects(img,'cutto',roi3,roi_hierarchy3,id_objects3,obj_hierarchy3,device, args.debug) device, kept_mask4_1 = pcv.logical_or(ab_cnt3, kept_mask3, device, args.debug) device, kept_cnt = pcv.logical_or(ab_cnt3, kept_mask3, device, args.debug) device, kept_mask4 = pcv.fill(kept_mask4_1, kept_cnt, 200, device, args.debug) device, masked5 = pcv.apply_mask(masked2, kept_mask4, 'white', device, args.debug) device, id_objects4,obj_hierarchy4 = pcv.find_objects(masked5, kept_mask4, device, args.debug) device, roi4, roi_hierarchy4= pcv.define_roi(masked2,'rectangle', device, None, 'default', args.debug,False, 0, 0,0,0) device,roi_objects4, hierarchy4, kept_mask4, obj_area = pcv.roi_objects(img,'partial',roi4,roi_hierarchy4,id_objects4,obj_hierarchy4,device, args.debug) # Object combine kept objects device, obj, mask = pcv.object_composition(img, roi_objects4, hierarchy4, device, args.debug) ############## Analysis ################ # Find shape properties, output shape image (optional) device, shape_header,shape_data,shape_img = pcv.analyze_object(img, args.image, obj, mask, device,args.debug,args.outdir+'/'+filename) # Shape properties relative to user boundary line (optional) device, boundary_header,boundary_data, boundary_img1= pcv.analyze_bound(img, args.image,obj, mask, 950, device,args.debug,args.outdir+'/'+filename) # Tiller Tool Test device, tillering_header, tillering_data, tillering_img= pcv.tiller_count(img, args.image,obj, mask, 965, device,args.debug,args.outdir+'/'+filename) # Determine color properties: Histograms, Color Slices and Pseudocolored Images, output color analyzed images (optional) device, color_header,color_data,norm_slice= pcv.analyze_color(img, args.image, kept_mask4, 256, device, args.debug,'all','rgb','v',args.outdir+'/'+filename) # Output shape and color data pcv.print_results(args.image, shape_header, shape_data) pcv.print_results(args.image, color_header, color_data) pcv.print_results(args.image, boundary_header, boundary_data) pcv.print_results(args.image, tillering_header,tillering_data)
def main(): # Get options args = options() # Read image img, path, filename = pcv.readimage(args.image) # roi = cv2.imread(args.roi) # Pipeline step device = 0 # Convert RGB to HSV and extract the Saturation channel device, s = pcv.rgb2gray_hsv(img, "s", device, args.debug) # Threshold the Saturation image device, s_thresh = pcv.binary_threshold(s, 36, 255, "light", device, args.debug) # Median Filter device, s_mblur = pcv.median_blur(s_thresh, 0, device, args.debug) device, s_cnt = pcv.median_blur(s_thresh, 0, device, args.debug) # Fill small objects # device, s_fill = pcv.fill(s_mblur, s_cnt, 0, device, args.debug) # Convert RGB to LAB and extract the Blue channel device, b = pcv.rgb2gray_lab(img, "b", device, args.debug) # Threshold the blue image device, b_thresh = pcv.binary_threshold(b, 137, 255, "light", device, args.debug) device, b_cnt = pcv.binary_threshold(b, 137, 255, "light", device, args.debug) # Fill small objects # device, b_fill = pcv.fill(b_thresh, b_cnt, 10, device, args.debug) # Join the thresholded saturation and blue-yellow images device, bs = pcv.logical_and(s_mblur, b_cnt, device, args.debug) # Apply Mask (for vis images, mask_color=white) device, masked = pcv.apply_mask(img, bs, "white", device, args.debug) # Convert RGB to LAB and extract the Green-Magenta and Blue-Yellow channels device, masked_a = pcv.rgb2gray_lab(masked, "a", device, args.debug) device, masked_b = pcv.rgb2gray_lab(masked, "b", device, args.debug) # Threshold the green-magenta and blue images device, maskeda_thresh = pcv.binary_threshold(masked_a, 127, 255, "dark", device, args.debug) device, maskedb_thresh = pcv.binary_threshold(masked_b, 128, 255, "light", device, args.debug) # Join the thresholded saturation and blue-yellow images (OR) device, ab = pcv.logical_or(maskeda_thresh, maskedb_thresh, device, args.debug) device, ab_cnt = pcv.logical_or(maskeda_thresh, maskedb_thresh, device, args.debug) # Fill small noise device, ab_fill1 = pcv.fill(ab, ab_cnt, 2, device, args.debug) # Dilate to join small objects with larger ones device, ab_cnt1 = pcv.dilate(ab_fill1, 3, 2, device, args.debug) device, ab_cnt2 = pcv.dilate(ab_fill1, 3, 2, device, args.debug) # Fill dilated image mask device, ab_cnt3 = pcv.fill(ab_cnt2, ab_cnt1, 150, device, args.debug) device, masked2 = pcv.apply_mask(masked, ab_cnt3, "white", device, args.debug) # Convert RGB to LAB and extract the Green-Magenta and Blue-Yellow channels device, masked2_a = pcv.rgb2gray_lab(masked2, "a", device, args.debug) device, masked2_b = pcv.rgb2gray_lab(masked2, "b", device, args.debug) # Threshold the green-magenta and blue images device, masked2a_thresh = pcv.binary_threshold(masked2_a, 127, 255, "dark", device, args.debug) device, masked2b_thresh = pcv.binary_threshold(masked2_b, 128, 255, "light", device, args.debug) device, ab_fill = pcv.logical_or(masked2a_thresh, masked2b_thresh, device, args.debug) # Identify objects device, id_objects, obj_hierarchy = pcv.find_objects(masked2, ab_fill, device, args.debug) # Define ROI device, roi1, roi_hierarchy = pcv.define_roi( masked2, "rectangle", device, None, "default", args.debug, True, 550, 0, -600, -925 ) # Decide which objects to keep device, roi_objects, hierarchy3, kept_mask, obj_area = pcv.roi_objects( img, "partial", roi1, roi_hierarchy, id_objects, obj_hierarchy, device, args.debug ) # Object combine kept objects device, obj, mask = pcv.object_composition(img, roi_objects, hierarchy3, device, args.debug) ############### Analysis ################ # Find shape properties, output shape image (optional) device, shape_header, shape_data, shape_img = pcv.analyze_object( img, args.image, obj, mask, device, args.debug, args.outdir + "/" + filename ) # Shape properties relative to user boundary line (optional) device, boundary_header, boundary_data, boundary_img1 = pcv.analyze_bound( img, args.image, obj, mask, 900, device, args.debug, args.outdir + "/" + filename ) # Determine color properties: Histograms, Color Slices and Pseudocolored Images, output color analyzed images (optional) device, color_header, color_data, color_img = pcv.analyze_color( img, args.image, kept_mask, 256, device, args.debug, None, "v", "img", 300, args.outdir + "/" + filename ) # Output shape and color data pcv.print_results(args.image, shape_header, shape_data) pcv.print_results(args.image, color_header, color_data) pcv.print_results(args.image, boundary_header, boundary_data)
def process_tv_images(session, url, vis_id, nir_id, traits, debug=False): """Process top-view images. Inputs: session = requests session object url = Clowder URL vis_id = The Clowder ID of an RGB image nir_img = The Clowder ID of an NIR grayscale image traits = traits table (dictionary) debug = None, print, or plot. Print = save to file, Plot = print to screen. :param session: requests session object :param url: str :param vis_id: str :param nir_id: str :param traits: dict :param debug: str :return traits: dict """ # Read VIS image from Clowder vis_r = session.get(posixpath.join(url, "api/files", vis_id), stream=True) img_array = np.asarray(bytearray(vis_r.content), dtype="uint8") img = cv2.imdecode(img_array, -1) # Read the VIS top-view image mask for zoom = 1 from Clowder mask_r = session.get(posixpath.join(url, "api/files/57451b28e4b0efbe2dc3d4d5"), stream=True) mask_array = np.asarray(bytearray(mask_r.content), dtype="uint8") brass_mask = cv2.imdecode(mask_array, -1) device = 0 # Convert RGB to HSV and extract the Saturation channel device, s = pcv.rgb2gray_hsv(img, 's', device, debug) # Threshold the Saturation image device, s_thresh = pcv.binary_threshold(s, 75, 255, 'light', device, debug) # Median Filter device, s_mblur = pcv.median_blur(s_thresh, 5, device, debug) device, s_cnt = pcv.median_blur(s_thresh, 5, device, debug) # Fill small objects device, s_fill = pcv.fill(s_mblur, s_cnt, 150, device, debug) # Convert RGB to LAB and extract the Blue channel device, b = pcv.rgb2gray_lab(img, 'b', device, debug) # Threshold the blue image device, b_thresh = pcv.binary_threshold(b, 138, 255, 'light', device, debug) device, b_cnt = pcv.binary_threshold(b, 138, 255, 'light', device, debug) # Fill small objects device, b_fill = pcv.fill(b_thresh, b_cnt, 100, device, debug) # Join the thresholded saturation and blue-yellow images device, bs = pcv.logical_and(s_fill, b_fill, device, debug) # Apply Mask (for vis images, mask_color=white) device, masked = pcv.apply_mask(img, bs, 'white', device, debug) # Mask pesky brass piece device, brass_mask1 = pcv.rgb2gray_hsv(brass_mask, 'v', device, debug) device, brass_thresh = pcv.binary_threshold(brass_mask1, 0, 255, 'light', device, debug) device, brass_inv = pcv.invert(brass_thresh, device, debug) device, brass_masked = pcv.apply_mask(masked, brass_inv, 'white', device, debug) # Further mask soil and car device, masked_a = pcv.rgb2gray_lab(brass_masked, 'a', device, debug) device, soil_car1 = pcv.binary_threshold(masked_a, 128, 255, 'dark', device, debug) device, soil_car2 = pcv.binary_threshold(masked_a, 128, 255, 'light', device, debug) device, soil_car = pcv.logical_or(soil_car1, soil_car2, device, debug) device, soil_masked = pcv.apply_mask(brass_masked, soil_car, 'white', device, debug) # Convert RGB to LAB and extract the Green-Magenta and Blue-Yellow channels device, soil_a = pcv.rgb2gray_lab(soil_masked, 'a', device, debug) device, soil_b = pcv.rgb2gray_lab(soil_masked, 'b', device, debug) # Threshold the green-magenta and blue images device, soila_thresh = pcv.binary_threshold(soil_a, 124, 255, 'dark', device, debug) device, soilb_thresh = pcv.binary_threshold(soil_b, 148, 255, 'light', device, debug) # Join the thresholded saturation and blue-yellow images (OR) device, soil_ab = pcv.logical_or(soila_thresh, soilb_thresh, device, debug) device, soil_ab_cnt = pcv.logical_or(soila_thresh, soilb_thresh, device, debug) # Fill small objects device, soil_cnt = pcv.fill(soil_ab, soil_ab_cnt, 300, device, debug) # Apply mask (for vis images, mask_color=white) device, masked2 = pcv.apply_mask(soil_masked, soil_cnt, 'white', device, debug) # Identify objects device, id_objects, obj_hierarchy = pcv.find_objects(masked2, soil_cnt, device, debug) # Define ROI device, roi1, roi_hierarchy = pcv.define_roi(img, 'rectangle', device, None, 'default', debug, True, 600, 450, -600, -350) # Decide which objects to keep device, roi_objects, hierarchy3, kept_mask, obj_area = pcv.roi_objects(img, 'partial', roi1, roi_hierarchy, id_objects, obj_hierarchy, device, debug) # Object combine kept objects device, obj, mask = pcv.object_composition(img, roi_objects, hierarchy3, device, debug) # Find shape properties, output shape image (optional) device, shape_header, shape_data, shape_img = pcv.analyze_object(img, vis_id, obj, mask, device, debug) # Determine color properties device, color_header, color_data, color_img = pcv.analyze_color(img, vis_id, mask, 256, device, debug, None, 'v', 'img', 300) # Output shape and color data vis_traits = {} for i in range(1, len(shape_header)): vis_traits[shape_header[i]] = shape_data[i] for i in range(2, len(color_header)): vis_traits[color_header[i]] = serialize_color_data(color_data[i]) #print(vis_traits) add_plantcv_metadata(session, url, vis_id, vis_traits) ############################# Use VIS image mask for NIR image######################### # Read NIR image from Clowder nir_r = session.get(posixpath.join(url, "api/files", nir_id), stream=True) nir_array = np.asarray(bytearray(nir_r.content), dtype="uint8") nir = cv2.imdecode(nir_array, -1) nir_rgb = cv2.cvtColor(nir, cv2.COLOR_GRAY2BGR) # Flip mask device, f_mask = pcv.flip(mask, "horizontal", device, debug) # Reize mask device, nmask = pcv.resize(f_mask, 0.116148, 0.116148, device, debug) # position, and crop mask device, newmask = pcv.crop_position_mask(nir_rgb, nmask, device, 15, 5, "top", "right", debug) # Identify objects device, nir_objects, nir_hierarchy = pcv.find_objects(nir_rgb, newmask, device, debug) # Object combine kept objects device, nir_combined, nir_combinedmask = pcv.object_composition(nir_rgb, nir_objects, nir_hierarchy, device, debug) ####################################### Analysis ############################################# device, nhist_header, nhist_data, nir_imgs = pcv.analyze_NIR_intensity(nir, nir_id, nir_combinedmask, 256, device, False, debug) device, nshape_header, nshape_data, nir_shape = pcv.analyze_object(nir, nir_id, nir_combined, nir_combinedmask, device, debug) nir_traits = {} for i in range(1, len(nshape_header)): nir_traits[nshape_header[i]] = nshape_data[i] for i in range(2, len(nhist_header)): nir_traits[nhist_header[i]] = serialize_color_data(nhist_data[i]) #print(nir_traits) add_plantcv_metadata(session, url, nir_id, nir_traits) # Add data to traits table traits['tv_area'] = vis_traits['area'] return traits
def process_sv_images(session, url, vis_id, nir_id, traits, debug=None): """Process side-view images from Clowder. Inputs: session = requests session object url = Clowder URL vis_id = The Clowder ID of an RGB image nir_img = The Clowder ID of an NIR grayscale image traits = traits table (dictionary) debug = None, print, or plot. Print = save to file, Plot = print to screen :param session: requests session object :param url: str :param vis_id: str :param nir_id: str :param traits: dict :param debug: str :return traits: dict """ # Read VIS image from Clowder vis_r = session.get(posixpath.join(url, "api/files", vis_id), stream=True) img_array = np.asarray(bytearray(vis_r.content), dtype="uint8") img = cv2.imdecode(img_array, -1) # Pipeline step device = 0 # Convert RGB to HSV and extract the Saturation channel device, s = pcv.rgb2gray_hsv(img, 's', device, debug) # Threshold the Saturation image device, s_thresh = pcv.binary_threshold(s, 36, 255, 'light', device, debug) # Median Filter device, s_mblur = pcv.median_blur(s_thresh, 5, device, debug) device, s_cnt = pcv.median_blur(s_thresh, 5, device, debug) # Fill small objects # device, s_fill = pcv.fill(s_mblur, s_cnt, 0, device, args.debug) # Convert RGB to LAB and extract the Blue channel device, b = pcv.rgb2gray_lab(img, 'b', device, debug) # Threshold the blue image device, b_thresh = pcv.binary_threshold(b, 137, 255, 'light', device, debug) device, b_cnt = pcv.binary_threshold(b, 137, 255, 'light', device, debug) # Fill small objects # device, b_fill = pcv.fill(b_thresh, b_cnt, 10, device, args.debug) # Join the thresholded saturation and blue-yellow images device, bs = pcv.logical_and(s_mblur, b_cnt, device, debug) # Apply Mask (for vis images, mask_color=white) device, masked = pcv.apply_mask(img, bs, 'white', device, debug) # Convert RGB to LAB and extract the Green-Magenta and Blue-Yellow channels device, masked_a = pcv.rgb2gray_lab(masked, 'a', device, debug) device, masked_b = pcv.rgb2gray_lab(masked, 'b', device, debug) # Threshold the green-magenta and blue images device, maskeda_thresh = pcv.binary_threshold(masked_a, 127, 255, 'dark', device, debug) device, maskedb_thresh = pcv.binary_threshold(masked_b, 128, 255, 'light', device, debug) # Join the thresholded saturation and blue-yellow images (OR) device, ab = pcv.logical_or(maskeda_thresh, maskedb_thresh, device, debug) device, ab_cnt = pcv.logical_or(maskeda_thresh, maskedb_thresh, device, debug) # Fill small noise device, ab_fill1 = pcv.fill(ab, ab_cnt, 200, device, debug) # Dilate to join small objects with larger ones device, ab_cnt1 = pcv.dilate(ab_fill1, 3, 2, device, debug) device, ab_cnt2 = pcv.dilate(ab_fill1, 3, 2, device, debug) # Fill dilated image mask device, ab_cnt3 = pcv.fill(ab_cnt2, ab_cnt1, 150, device, debug) device, masked2 = pcv.apply_mask(masked, ab_cnt3, 'white', device, debug) # Convert RGB to LAB and extract the Green-Magenta and Blue-Yellow channels device, masked2_a = pcv.rgb2gray_lab(masked2, 'a', device, debug) device, masked2_b = pcv.rgb2gray_lab(masked2, 'b', device, debug) # Threshold the green-magenta and blue images device, masked2a_thresh = pcv.binary_threshold(masked2_a, 127, 255, 'dark', device, debug) device, masked2b_thresh = pcv.binary_threshold(masked2_b, 128, 255, 'light', device, debug) device, masked2a_thresh_blur = pcv.median_blur(masked2a_thresh, 5, device, debug) device, masked2b_thresh_blur = pcv.median_blur(masked2b_thresh, 13, device, debug) device, ab_fill = pcv.logical_or(masked2a_thresh_blur, masked2b_thresh_blur, device, debug) # Identify objects device, id_objects, obj_hierarchy = pcv.find_objects(masked2, ab_fill, device, debug) # Define ROI device, roi1, roi_hierarchy = pcv.define_roi(masked2, 'rectangle', device, None, 'default', debug, True, 700, 0, -600, -300) # Decide which objects to keep device, roi_objects, hierarchy3, kept_mask, obj_area = pcv.roi_objects(img, 'partial', roi1, roi_hierarchy, id_objects, obj_hierarchy, device, debug) # Object combine kept objects device, obj, mask = pcv.object_composition(img, roi_objects, hierarchy3, device, debug) ############## VIS Analysis ################ # Find shape properties, output shape image (optional) device, shape_header, shape_data, shape_img = pcv.analyze_object(img, vis_id, obj, mask, device, debug) # Shape properties relative to user boundary line (optional) device, boundary_header, boundary_data, boundary_img1 = pcv.analyze_bound(img, vis_id, obj, mask, 384, device, debug) # Determine color properties: Histograms, Color Slices and # Pseudocolored Images, output color analyzed images (optional) device, color_header, color_data, color_img = pcv.analyze_color(img, vis_id, mask, 256, device, debug, None, 'v', 'img', 300) # Output shape and color data vis_traits = {} for i in range(1, len(shape_header)): vis_traits[shape_header[i]] = shape_data[i] for i in range(1, len(boundary_header)): vis_traits[boundary_header[i]] = boundary_data[i] for i in range(2, len(color_header)): vis_traits[color_header[i]] = serialize_color_data(color_data[i]) #print(vis_traits) add_plantcv_metadata(session, url, vis_id, vis_traits) ############################# Use VIS image mask for NIR image######################### # Read NIR image from Clowder nir_r = session.get(posixpath.join(url, "api/files", nir_id), stream=True) nir_array = np.asarray(bytearray(nir_r.content), dtype="uint8") nir = cv2.imdecode(nir_array, -1) nir_rgb = cv2.cvtColor(nir, cv2.COLOR_GRAY2BGR) # Flip mask device, f_mask = pcv.flip(mask, "vertical", device, debug) # Reize mask device, nmask = pcv.resize(f_mask, 0.1154905775, 0.1154905775, device, debug) # position, and crop mask device, newmask = pcv.crop_position_mask(nir_rgb, nmask, device, 30, 4, "top", "right", debug) # Identify objects device, nir_objects, nir_hierarchy = pcv.find_objects(nir_rgb, newmask, device, debug) # Object combine kept objects device, nir_combined, nir_combinedmask = pcv.object_composition(nir_rgb, nir_objects, nir_hierarchy, device, debug) ####################################### Analysis ############################################# device, nhist_header, nhist_data, nir_imgs = pcv.analyze_NIR_intensity(nir, nir_id, nir_combinedmask, 256, device, False, debug) device, nshape_header, nshape_data, nir_shape = pcv.analyze_object(nir, nir_id, nir_combined, nir_combinedmask, device, debug) nir_traits = {} for i in range(1, len(nshape_header)): nir_traits[nshape_header[i]] = nshape_data[i] for i in range(2, len(nhist_header)): nir_traits[nhist_header[i]] = serialize_color_data(nhist_data[i]) #print(nir_traits) add_plantcv_metadata(session, url, nir_id, nir_traits) # Add data to traits table traits['sv_area'].append(vis_traits['area']) traits['hull_area'].append(vis_traits['hull-area']) traits['solidity'].append(vis_traits['solidity']) traits['height'].append(vis_traits['height_above_bound']) traits['perimeter'].append(vis_traits['perimeter']) return traits
def process_sv_images(vis_img, nir_img, debug=None): """Process side-view images. Inputs: vis_img = An RGB image. nir_img = An NIR grayscale image. debug = None, print, or plot. Print = save to file, Plot = print to screen. :param vis_img: str :param nir_img: str :param debug: str :return: """ # Read VIS image img, path, filename = pcv.readimage(vis_img) # Pipeline step device = 0 # Convert RGB to HSV and extract the Saturation channel device, s = pcv.rgb2gray_hsv(img, 's', device, debug) # Threshold the Saturation image device, s_thresh = pcv.binary_threshold(s, 36, 255, 'light', device, debug) # Median Filter device, s_mblur = pcv.median_blur(s_thresh, 5, device, debug) device, s_cnt = pcv.median_blur(s_thresh, 5, device, debug) # Fill small objects # device, s_fill = pcv.fill(s_mblur, s_cnt, 0, device, args.debug) # Convert RGB to LAB and extract the Blue channel device, b = pcv.rgb2gray_lab(img, 'b', device, debug) # Threshold the blue image device, b_thresh = pcv.binary_threshold(b, 137, 255, 'light', device, debug) device, b_cnt = pcv.binary_threshold(b, 137, 255, 'light', device, debug) # Fill small objects # device, b_fill = pcv.fill(b_thresh, b_cnt, 10, device, args.debug) # Join the thresholded saturation and blue-yellow images device, bs = pcv.logical_and(s_mblur, b_cnt, device, debug) # Apply Mask (for vis images, mask_color=white) device, masked = pcv.apply_mask(img, bs, 'white', device, debug) # Convert RGB to LAB and extract the Green-Magenta and Blue-Yellow channels device, masked_a = pcv.rgb2gray_lab(masked, 'a', device, debug) device, masked_b = pcv.rgb2gray_lab(masked, 'b', device, debug) # Threshold the green-magenta and blue images device, maskeda_thresh = pcv.binary_threshold(masked_a, 127, 255, 'dark', device, debug) device, maskedb_thresh = pcv.binary_threshold(masked_b, 128, 255, 'light', device, debug) # Join the thresholded saturation and blue-yellow images (OR) device, ab = pcv.logical_or(maskeda_thresh, maskedb_thresh, device, debug) device, ab_cnt = pcv.logical_or(maskeda_thresh, maskedb_thresh, device, debug) # Fill small noise device, ab_fill1 = pcv.fill(ab, ab_cnt, 200, device, debug) # Dilate to join small objects with larger ones device, ab_cnt1 = pcv.dilate(ab_fill1, 3, 2, device, debug) device, ab_cnt2 = pcv.dilate(ab_fill1, 3, 2, device, debug) # Fill dilated image mask device, ab_cnt3 = pcv.fill(ab_cnt2, ab_cnt1, 150, device, debug) device, masked2 = pcv.apply_mask(masked, ab_cnt3, 'white', device, debug) # Convert RGB to LAB and extract the Green-Magenta and Blue-Yellow channels device, masked2_a = pcv.rgb2gray_lab(masked2, 'a', device, debug) device, masked2_b = pcv.rgb2gray_lab(masked2, 'b', device, debug) # Threshold the green-magenta and blue images device, masked2a_thresh = pcv.binary_threshold(masked2_a, 127, 255, 'dark', device, debug) device, masked2b_thresh = pcv.binary_threshold(masked2_b, 128, 255, 'light', device, debug) device, masked2a_thresh_blur = pcv.median_blur(masked2a_thresh, 5, device, debug) device, masked2b_thresh_blur = pcv.median_blur(masked2b_thresh, 13, device, debug) device, ab_fill = pcv.logical_or(masked2a_thresh_blur, masked2b_thresh_blur, device, debug) # Identify objects device, id_objects, obj_hierarchy = pcv.find_objects(masked2, ab_fill, device, debug) # Define ROI device, roi1, roi_hierarchy = pcv.define_roi(masked2, 'rectangle', device, None, 'default', debug, True, 700, 0, -600, -300) # Decide which objects to keep device, roi_objects, hierarchy3, kept_mask, obj_area = pcv.roi_objects(img, 'partial', roi1, roi_hierarchy, id_objects, obj_hierarchy, device, debug) # Object combine kept objects device, obj, mask = pcv.object_composition(img, roi_objects, hierarchy3, device, debug) ############## VIS Analysis ################ # Find shape properties, output shape image (optional) device, shape_header, shape_data, shape_img = pcv.analyze_object(img, vis_img, obj, mask, device, debug) # Shape properties relative to user boundary line (optional) device, boundary_header, boundary_data, boundary_img1 = pcv.analyze_bound(img, vis_img, obj, mask, 384, device, debug) # Determine color properties: Histograms, Color Slices and # Pseudocolored Images, output color analyzed images (optional) device, color_header, color_data, color_img = pcv.analyze_color(img, vis_img, mask, 256, device, debug, None, 'v', 'img', 300) # Output shape and color data print('\t'.join(map(str, shape_header)) + '\n') print('\t'.join(map(str, shape_data)) + '\n') for row in shape_img: print('\t'.join(map(str, row)) + '\n') print('\t'.join(map(str, color_header)) + '\n') print('\t'.join(map(str, color_data)) + '\n') print('\t'.join(map(str, boundary_header)) + '\n') print('\t'.join(map(str, boundary_data)) + '\n') print('\t'.join(map(str, boundary_img1)) + '\n') for row in color_img: print('\t'.join(map(str, row)) + '\n') ############################# Use VIS image mask for NIR image######################### # Read NIR image nir, path1, filename1 = pcv.readimage(nir_img) nir2 = cv2.imread(nir_img, -1) # Flip mask device, f_mask = pcv.flip(mask, "vertical", device, debug) # Reize mask device, nmask = pcv.resize(f_mask, 0.1154905775, 0.1154905775, device, debug) # position, and crop mask device, newmask = pcv.crop_position_mask(nir, nmask, device, 30, 4, "top", "right", debug) # Identify objects device, nir_objects, nir_hierarchy = pcv.find_objects(nir, newmask, device, debug) # Object combine kept objects device, nir_combined, nir_combinedmask = pcv.object_composition(nir, nir_objects, nir_hierarchy, device, debug) ####################################### Analysis ############################################# device, nhist_header, nhist_data, nir_imgs = pcv.analyze_NIR_intensity(nir2, filename1, nir_combinedmask, 256, device, False, debug) device, nshape_header, nshape_data, nir_shape = pcv.analyze_object(nir2, filename1, nir_combined, nir_combinedmask, device, debug) print('\t'.join(map(str, nhist_header)) + '\n') print('\t'.join(map(str, nhist_data)) + '\n') for row in nir_imgs: print('\t'.join(map(str, row)) + '\n') print('\t'.join(map(str, nshape_header)) + '\n') print('\t'.join(map(str, nshape_data)) + '\n') print('\t'.join(map(str, nir_shape)) + '\n')
def process_tv_images(vis_img, nir_img, debug=False): """Process top-view images. Inputs: vis_img = An RGB image. nir_img = An NIR grayscale image. debug = None, print, or plot. Print = save to file, Plot = print to screen. :param vis_img: str :param nir_img: str :param debug: str :return: """ # Read image img, path, filename = pcv.readimage(vis_img) brass_mask = cv2.imread('mask_brass_tv_z1_L1.png') device = 0 # Convert RGB to HSV and extract the Saturation channel device, s = pcv.rgb2gray_hsv(img, 's', device, debug) # Threshold the Saturation image device, s_thresh = pcv.binary_threshold(s, 75, 255, 'light', device, debug) # Median Filter device, s_mblur = pcv.median_blur(s_thresh, 5, device, debug) device, s_cnt = pcv.median_blur(s_thresh, 5, device, debug) # Fill small objects device, s_fill = pcv.fill(s_mblur, s_cnt, 150, device, debug) # Convert RGB to LAB and extract the Blue channel device, b = pcv.rgb2gray_lab(img, 'b', device, debug) # Threshold the blue image device, b_thresh = pcv.binary_threshold(b, 138, 255, 'light', device, debug) device, b_cnt = pcv.binary_threshold(b, 138, 255, 'light', device, debug) # Fill small objects device, b_fill = pcv.fill(b_thresh, b_cnt, 100, device, debug) # Join the thresholded saturation and blue-yellow images device, bs = pcv.logical_and(s_fill, b_fill, device, debug) # Apply Mask (for vis images, mask_color=white) device, masked = pcv.apply_mask(img, bs, 'white', device, debug) # Mask pesky brass piece device, brass_mask1 = pcv.rgb2gray_hsv(brass_mask, 'v', device, debug) device, brass_thresh = pcv.binary_threshold(brass_mask1, 0, 255, 'light', device, debug) device, brass_inv = pcv.invert(brass_thresh, device, debug) device, brass_masked = pcv.apply_mask(masked, brass_inv, 'white', device, debug) # Further mask soil and car device, masked_a = pcv.rgb2gray_lab(brass_masked, 'a', device, debug) device, soil_car1 = pcv.binary_threshold(masked_a, 128, 255, 'dark', device, debug) device, soil_car2 = pcv.binary_threshold(masked_a, 128, 255, 'light', device, debug) device, soil_car = pcv.logical_or(soil_car1, soil_car2, device, debug) device, soil_masked = pcv.apply_mask(brass_masked, soil_car, 'white', device, debug) # Convert RGB to LAB and extract the Green-Magenta and Blue-Yellow channels device, soil_a = pcv.rgb2gray_lab(soil_masked, 'a', device, debug) device, soil_b = pcv.rgb2gray_lab(soil_masked, 'b', device, debug) # Threshold the green-magenta and blue images device, soila_thresh = pcv.binary_threshold(soil_a, 124, 255, 'dark', device, debug) device, soilb_thresh = pcv.binary_threshold(soil_b, 148, 255, 'light', device, debug) # Join the thresholded saturation and blue-yellow images (OR) device, soil_ab = pcv.logical_or(soila_thresh, soilb_thresh, device, debug) device, soil_ab_cnt = pcv.logical_or(soila_thresh, soilb_thresh, device, debug) # Fill small objects device, soil_cnt = pcv.fill(soil_ab, soil_ab_cnt, 300, device, debug) # Apply mask (for vis images, mask_color=white) device, masked2 = pcv.apply_mask(soil_masked, soil_cnt, 'white', device, debug) # Identify objects device, id_objects, obj_hierarchy = pcv.find_objects(masked2, soil_cnt, device, debug) # Define ROI device, roi1, roi_hierarchy = pcv.define_roi(img, 'rectangle', device, None, 'default', debug, True, 600, 450, -600, -350) # Decide which objects to keep device, roi_objects, hierarchy3, kept_mask, obj_area = pcv.roi_objects(img, 'partial', roi1, roi_hierarchy, id_objects, obj_hierarchy, device, debug) # Object combine kept objects device, obj, mask = pcv.object_composition(img, roi_objects, hierarchy3, device, debug) # Find shape properties, output shape image (optional) device, shape_header, shape_data, shape_img = pcv.analyze_object(img, vis_img, obj, mask, device, debug) # Determine color properties device, color_header, color_data, color_img = pcv.analyze_color(img, vis_img, mask, 256, device, debug, None, 'v', 'img', 300) print('\t'.join(map(str, shape_header)) + '\n') print('\t'.join(map(str, shape_data)) + '\n') for row in shape_img: print('\t'.join(map(str, row)) + '\n') print('\t'.join(map(str, color_header)) + '\n') print('\t'.join(map(str, color_data)) + '\n') for row in color_img: print('\t'.join(map(str, row)) + '\n') ############################# Use VIS image mask for NIR image######################### # Read NIR image nir, path1, filename1 = pcv.readimage(nir_img) nir2 = cv2.imread(nir_img, -1) # Flip mask device, f_mask = pcv.flip(mask, "horizontal", device, debug) # Reize mask device, nmask = pcv.resize(f_mask, 0.116148, 0.116148, device, debug) # position, and crop mask device, newmask = pcv.crop_position_mask(nir, nmask, device, 15, 5, "top", "right", debug) # Identify objects device, nir_objects, nir_hierarchy = pcv.find_objects(nir, newmask, device, debug) # Object combine kept objects device, nir_combined, nir_combinedmask = pcv.object_composition(nir, nir_objects, nir_hierarchy, device, debug) ####################################### Analysis ############################################# device, nhist_header, nhist_data, nir_imgs = pcv.analyze_NIR_intensity(nir2, filename1, nir_combinedmask, 256, device, False, debug) device, nshape_header, nshape_data, nir_shape = pcv.analyze_object(nir2, filename1, nir_combined, nir_combinedmask, device, debug) print('\t'.join(map(str,nhist_header)) + '\n') print('\t'.join(map(str,nhist_data)) + '\n') for row in nir_imgs: print('\t'.join(map(str,row)) + '\n') print('\t'.join(map(str,nshape_header)) + '\n') print('\t'.join(map(str,nshape_data)) + '\n') print('\t'.join(map(str,nir_shape)) + '\n')
def process_tv_images_core(vis_id, vis_img, nir_id, nir_rgb, nir_cv2, brass_mask, traits, debug=None): device = 0 # Convert RGB to HSV and extract the Saturation channel device, s = pcv.rgb2gray_hsv(vis_img, 's', device, debug) # Threshold the Saturation image device, s_thresh = pcv.binary_threshold(s, 75, 255, 'light', device, debug) # Median Filter device, s_mblur = pcv.median_blur(s_thresh, 5, device, debug) device, s_cnt = pcv.median_blur(s_thresh, 5, device, debug) # Fill small objects device, s_fill = pcv.fill(s_mblur, s_cnt, 150, device, debug) # Convert RGB to LAB and extract the Blue channel device, b = pcv.rgb2gray_lab(vis_img, 'b', device, debug) # Threshold the blue image device, b_thresh = pcv.binary_threshold(b, 138, 255, 'light', device, debug) device, b_cnt = pcv.binary_threshold(b, 138, 255, 'light', device, debug) # Fill small objects device, b_fill = pcv.fill(b_thresh, b_cnt, 100, device, debug) # Join the thresholded saturation and blue-yellow images device, bs = pcv.logical_and(s_fill, b_fill, device, debug) # Apply Mask (for vis images, mask_color=white) device, masked = pcv.apply_mask(vis_img, bs, 'white', device, debug) # Mask pesky brass piece device, brass_mask1 = pcv.rgb2gray_hsv(brass_mask, 'v', device, debug) device, brass_thresh = pcv.binary_threshold(brass_mask1, 0, 255, 'light', device, debug) device, brass_inv = pcv.invert(brass_thresh, device, debug) device, brass_masked = pcv.apply_mask(masked, brass_inv, 'white', device, debug) # Further mask soil and car device, masked_a = pcv.rgb2gray_lab(brass_masked, 'a', device, debug) device, soil_car1 = pcv.binary_threshold(masked_a, 128, 255, 'dark', device, debug) device, soil_car2 = pcv.binary_threshold(masked_a, 128, 255, 'light', device, debug) device, soil_car = pcv.logical_or(soil_car1, soil_car2, device, debug) device, soil_masked = pcv.apply_mask(brass_masked, soil_car, 'white', device, debug) # Convert RGB to LAB and extract the Green-Magenta and Blue-Yellow channels device, soil_a = pcv.rgb2gray_lab(soil_masked, 'a', device, debug) device, soil_b = pcv.rgb2gray_lab(soil_masked, 'b', device, debug) # Threshold the green-magenta and blue images device, soila_thresh = pcv.binary_threshold(soil_a, 124, 255, 'dark', device, debug) device, soilb_thresh = pcv.binary_threshold(soil_b, 148, 255, 'light', device, debug) # Join the thresholded saturation and blue-yellow images (OR) device, soil_ab = pcv.logical_or(soila_thresh, soilb_thresh, device, debug) device, soil_ab_cnt = pcv.logical_or(soila_thresh, soilb_thresh, device, debug) # Fill small objects device, soil_cnt = pcv.fill(soil_ab, soil_ab_cnt, 300, device, debug) # Apply mask (for vis images, mask_color=white) device, masked2 = pcv.apply_mask(soil_masked, soil_cnt, 'white', device, debug) # Identify objects device, id_objects, obj_hierarchy = pcv.find_objects( masked2, soil_cnt, device, debug) # Define ROI device, roi1, roi_hierarchy = pcv.define_roi(vis_img, 'rectangle', device, None, 'default', debug, True, 600, 450, -600, -350) # Decide which objects to keep device, roi_objects, hierarchy3, kept_mask, obj_area = pcv.roi_objects( vis_img, 'partial', roi1, roi_hierarchy, id_objects, obj_hierarchy, device, debug) # Object combine kept objects device, obj, mask = pcv.object_composition(vis_img, roi_objects, hierarchy3, device, debug) # Find shape properties, output shape image (optional) device, shape_header, shape_data, shape_img = pcv.analyze_object( vis_img, vis_id, obj, mask, device, debug) # Determine color properties device, color_header, color_data, color_img = pcv.analyze_color( vis_img, vis_id, mask, 256, device, debug, None, 'v', 'img', 300) # Output shape and color data vis_traits = {} for i in range(1, len(shape_header)): vis_traits[shape_header[i]] = shape_data[i] for i in range(2, len(color_header)): vis_traits[color_header[i]] = serialize_color_data(color_data[i]) ############################# Use VIS image mask for NIR image######################### # Flip mask device, f_mask = pcv.flip(mask, "horizontal", device, debug) # Reize mask device, nmask = pcv.resize(f_mask, 0.116148, 0.116148, device, debug) # position, and crop mask device, newmask = pcv.crop_position_mask(nir_rgb, nmask, device, 15, 5, "top", "right", debug) # Identify objects device, nir_objects, nir_hierarchy = pcv.find_objects( nir_rgb, newmask, device, debug) # Object combine kept objects device, nir_combined, nir_combinedmask = pcv.object_composition( nir_rgb, nir_objects, nir_hierarchy, device, debug) ####################################### Analysis ############################################# device, nhist_header, nhist_data, nir_imgs = pcv.analyze_NIR_intensity( nir_cv2, nir_id, nir_combinedmask, 256, device, False, debug) device, nshape_header, nshape_data, nir_shape = pcv.analyze_object( nir_cv2, nir_id, nir_combined, nir_combinedmask, device, debug) nir_traits = {} for i in range(1, len(nshape_header)): nir_traits[nshape_header[i]] = nshape_data[i] for i in range(2, len(nhist_header)): nir_traits[nhist_header[i]] = serialize_color_data(nhist_data[i]) # Add data to traits table traits['tv_area'] = vis_traits['area'] return [vis_traits, nir_traits]
def process_sv_images_core(vis_id, vis_img, nir_id, nir_rgb, nir_cv2, traits, debug=None): # Pipeline step device = 0 # Convert RGB to HSV and extract the Saturation channel device, s = pcv.rgb2gray_hsv(vis_img, 's', device, debug) # Threshold the Saturation image device, s_thresh = pcv.binary_threshold(s, 36, 255, 'light', device, debug) # Median Filter device, s_mblur = pcv.median_blur(s_thresh, 5, device, debug) device, s_cnt = pcv.median_blur(s_thresh, 5, device, debug) # Fill small objects # device, s_fill = pcv.fill(s_mblur, s_cnt, 0, device, args.debug) # Convert RGB to LAB and extract the Blue channel device, b = pcv.rgb2gray_lab(vis_img, 'b', device, debug) # Threshold the blue image device, b_thresh = pcv.binary_threshold(b, 137, 255, 'light', device, debug) device, b_cnt = pcv.binary_threshold(b, 137, 255, 'light', device, debug) # Fill small objects # device, b_fill = pcv.fill(b_thresh, b_cnt, 10, device, args.debug) # Join the thresholded saturation and blue-yellow images device, bs = pcv.logical_and(s_mblur, b_cnt, device, debug) # Apply Mask (for vis images, mask_color=white) device, masked = pcv.apply_mask(vis_img, bs, 'white', device, debug) # Convert RGB to LAB and extract the Green-Magenta and Blue-Yellow channels device, masked_a = pcv.rgb2gray_lab(masked, 'a', device, debug) device, masked_b = pcv.rgb2gray_lab(masked, 'b', device, debug) # Threshold the green-magenta and blue images device, maskeda_thresh = pcv.binary_threshold(masked_a, 127, 255, 'dark', device, debug) device, maskedb_thresh = pcv.binary_threshold(masked_b, 128, 255, 'light', device, debug) # Join the thresholded saturation and blue-yellow images (OR) device, ab = pcv.logical_or(maskeda_thresh, maskedb_thresh, device, debug) device, ab_cnt = pcv.logical_or(maskeda_thresh, maskedb_thresh, device, debug) # Fill small noise device, ab_fill1 = pcv.fill(ab, ab_cnt, 200, device, debug) # Dilate to join small objects with larger ones device, ab_cnt1 = pcv.dilate(ab_fill1, 3, 2, device, debug) device, ab_cnt2 = pcv.dilate(ab_fill1, 3, 2, device, debug) # Fill dilated image mask device, ab_cnt3 = pcv.fill(ab_cnt2, ab_cnt1, 150, device, debug) device, masked2 = pcv.apply_mask(masked, ab_cnt3, 'white', device, debug) # Convert RGB to LAB and extract the Green-Magenta and Blue-Yellow channels device, masked2_a = pcv.rgb2gray_lab(masked2, 'a', device, debug) device, masked2_b = pcv.rgb2gray_lab(masked2, 'b', device, debug) # Threshold the green-magenta and blue images device, masked2a_thresh = pcv.binary_threshold(masked2_a, 127, 255, 'dark', device, debug) device, masked2b_thresh = pcv.binary_threshold(masked2_b, 128, 255, 'light', device, debug) device, masked2a_thresh_blur = pcv.median_blur(masked2a_thresh, 5, device, debug) device, masked2b_thresh_blur = pcv.median_blur(masked2b_thresh, 13, device, debug) device, ab_fill = pcv.logical_or(masked2a_thresh_blur, masked2b_thresh_blur, device, debug) # Identify objects device, id_objects, obj_hierarchy = pcv.find_objects( masked2, ab_fill, device, debug) # Define ROI device, roi1, roi_hierarchy = pcv.define_roi(masked2, 'rectangle', device, None, 'default', debug, True, 700, 0, -600, -300) # Decide which objects to keep device, roi_objects, hierarchy3, kept_mask, obj_area = pcv.roi_objects( vis_img, 'partial', roi1, roi_hierarchy, id_objects, obj_hierarchy, device, debug) # Object combine kept objects device, obj, mask = pcv.object_composition(vis_img, roi_objects, hierarchy3, device, debug) ############## VIS Analysis ################ # Find shape properties, output shape image (optional) device, shape_header, shape_data, shape_img = pcv.analyze_object( vis_img, vis_id, obj, mask, device, debug) # Shape properties relative to user boundary line (optional) device, boundary_header, boundary_data, boundary_img1 = pcv.analyze_bound( vis_img, vis_id, obj, mask, 384, device, debug) # Determine color properties: Histograms, Color Slices and # Pseudocolored Images, output color analyzed images (optional) device, color_header, color_data, color_img = pcv.analyze_color( vis_img, vis_id, mask, 256, device, debug, None, 'v', 'img', 300) # Output shape and color data vis_traits = {} for i in range(1, len(shape_header)): vis_traits[shape_header[i]] = shape_data[i] for i in range(1, len(boundary_header)): vis_traits[boundary_header[i]] = boundary_data[i] for i in range(2, len(color_header)): vis_traits[color_header[i]] = serialize_color_data(color_data[i]) ############################# Use VIS image mask for NIR image######################### # Flip mask device, f_mask = pcv.flip(mask, "vertical", device, debug) # Reize mask device, nmask = pcv.resize(f_mask, 0.1154905775, 0.1154905775, device, debug) # position, and crop mask device, newmask = pcv.crop_position_mask(nir_rgb, nmask, device, 30, 4, "top", "right", debug) # Identify objects device, nir_objects, nir_hierarchy = pcv.find_objects( nir_rgb, newmask, device, debug) # Object combine kept objects device, nir_combined, nir_combinedmask = pcv.object_composition( nir_rgb, nir_objects, nir_hierarchy, device, debug) ####################################### Analysis ############################################# device, nhist_header, nhist_data, nir_imgs = pcv.analyze_NIR_intensity( nir_cv2, nir_id, nir_combinedmask, 256, device, False, debug) device, nshape_header, nshape_data, nir_shape = pcv.analyze_object( nir_cv2, nir_id, nir_combined, nir_combinedmask, device, debug) nir_traits = {} for i in range(1, len(nshape_header)): nir_traits[nshape_header[i]] = nshape_data[i] for i in range(2, len(nhist_header)): nir_traits[nhist_header[i]] = serialize_color_data(nhist_data[i]) # Add data to traits table traits['sv_area'].append(vis_traits['area']) traits['hull_area'].append(vis_traits['hull-area']) traits['solidity'].append(vis_traits['solidity']) traits['height'].append(vis_traits['height_above_bound']) traits['perimeter'].append(vis_traits['perimeter']) return [vis_traits, nir_traits]
def main(): # Get options args = options() # Read image img, path, filename = pcv.readimage(args.image) #roi = cv2.imread(args.roi) # Pipeline step device = 0 # Convert RGB to HSV and extract the Saturation channel device, s = pcv.rgb2gray_lab(img, 'l', device, args.debug) # Threshold the Saturation image device, s_thresh = pcv.binary_threshold(s, 100, 255, 'light', device, args.debug) # Median Filter device, s_mblur = pcv.median_blur(s_thresh, 0, device, args.debug) device, s_cnt = pcv.median_blur(s_thresh, 0, device, args.debug) # Fill small objects #device, s_fill = pcv.fill(s_mblur, s_cnt, 0, device, args.debug) # Convert RGB to LAB and extract the Blue channel device, b = pcv.rgb2gray_lab(img, 'b', device, args.debug) # Threshold the blue image device, b_thresh = pcv.binary_threshold(b, 145, 255, 'light', device, args.debug) device, b_cnt = pcv.binary_threshold(b, 145, 255, 'light', device, args.debug) # Fill small objects #device, b_fill = pcv.fill(b_thresh, b_cnt, 10, device, args.debug) # Join the thresholded saturation and blue-yellow images device, bs = pcv.logical_and(s_mblur, b_cnt, device, args.debug) # Apply Mask (for vis images, mask_color=white) device, masked = pcv.apply_mask(img, bs, 'white', device, args.debug) # Convert RGB to LAB and extract the Green-Magenta and Blue-Yellow channels device, masked_a = pcv.rgb2gray_lab(masked, 'a', device, args.debug) device, masked_b = pcv.rgb2gray_lab(masked, 'b', device, args.debug) # Threshold the green-magenta and blue images device, maskeda_thresh = pcv.binary_threshold(masked_a, 127, 255, 'dark', device, args.debug) device, maskedb_thresh = pcv.binary_threshold(masked_b, 128, 255, 'light', device, args.debug) # Join the thresholded saturation and blue-yellow images (OR) device, ab = pcv.logical_or(maskeda_thresh, maskedb_thresh, device, args.debug) device, ab_cnt = pcv.logical_or(maskeda_thresh, maskedb_thresh, device, args.debug) # Fill small objects device, ab_fill = pcv.fill(ab, ab_cnt, 20, device, args.debug) # Apply mask (for vis images, mask_color=white) device, masked2 = pcv.apply_mask(masked, ab_fill, 'white', device, args.debug) # Identify objects device, id_objects, obj_hierarchy = pcv.find_objects( masked2, ab_fill, device, args.debug) # Define ROI device, roi1, roi_hierarchy = pcv.define_roi(img, 'rectangle', device, None, 'default', args.debug, True, 30, 25, -10, -15) # Decide which objects to keep device, roi_objects, hierarchy3, kept_mask, obj_area = pcv.roi_objects( img, 'partial', roi1, roi_hierarchy, id_objects, obj_hierarchy, device, args.debug) # Object combine kept objects device, obj, mask = pcv.object_composition(img, roi_objects, hierarchy3, device, args.debug) ############## Analysis ################ # Find shape properties, output shape image (optional) device, shape_header, shape_data, shape_img = pcv.analyze_object( img, args.image, obj, mask, device, args.debug, args.outdir + '/' + filename) # Shape properties relative to user boundary line (optional) device, boundary_header, boundary_data, boundary_img1 = pcv.analyze_bound( img, args.image, obj, mask, 25, device, args.debug, args.outdir + '/' + filename) # Determine color properties: Histograms, Color Slices and Pseudocolored Images, output color analyzed images (optional) device, color_header, color_data, norm_slice = pcv.analyze_color( img, args.image, kept_mask, 256, device, args.debug, 'all', 'rgb', 'v', 'img', 300, args.outdir + '/' + filename) # Output shape and color data pcv.print_results(args.image, shape_header, shape_data) pcv.print_results(args.image, color_header, color_data) pcv.print_results(args.image, boundary_header, boundary_data)
def main(): # Get options args = options() # Read image img, path, filename = pcv.readimage(args.image) brass_mask = cv2.imread(args.roi) # Pipeline step device = 0 # Convert RGB to HSV and extract the Saturation channel device, s = pcv.rgb2gray_hsv(img, "s", device, args.debug) # Threshold the Saturation image device, s_thresh = pcv.binary_threshold(s, 49, 255, "light", device, args.debug) # Median Filter device, s_mblur = pcv.median_blur(s_thresh, 5, device, args.debug) device, s_cnt = pcv.median_blur(s_thresh, 5, device, args.debug) # Fill small objects device, s_fill = pcv.fill(s_mblur, s_cnt, 150, device, args.debug) # Convert RGB to LAB and extract the Blue channel device, b = pcv.rgb2gray_lab(img, "b", device, args.debug) # Threshold the blue image device, b_thresh = pcv.binary_threshold(b, 138, 255, "light", device, args.debug) device, b_cnt = pcv.binary_threshold(b, 138, 255, "light", device, args.debug) # Fill small objects device, b_fill = pcv.fill(b_thresh, b_cnt, 150, device, args.debug) # Join the thresholded saturation and blue-yellow images device, bs = pcv.logical_and(s_fill, b_fill, device, args.debug) # Apply Mask (for vis images, mask_color=white) device, masked = pcv.apply_mask(img, bs, "white", device, args.debug) # Mask pesky brass piece device, brass_mask1 = pcv.rgb2gray_hsv(brass_mask, "v", device, args.debug) device, brass_thresh = pcv.binary_threshold(brass_mask1, 0, 255, "light", device, args.debug) device, brass_inv = pcv.invert(brass_thresh, device, args.debug) device, brass_masked = pcv.apply_mask(masked, brass_inv, "white", device, args.debug) # Further mask soil and car device, masked_a = pcv.rgb2gray_lab(brass_masked, "a", device, args.debug) device, soil_car = pcv.binary_threshold(masked_a, 128, 255, "dark", device, args.debug) device, soil_masked = pcv.apply_mask(brass_masked, soil_car, "white", device, args.debug) # Convert RGB to LAB and extract the Green-Magenta and Blue-Yellow channels device, soil_a = pcv.rgb2gray_lab(soil_masked, "a", device, args.debug) device, soil_b = pcv.rgb2gray_lab(soil_masked, "b", device, args.debug) # Threshold the green-magenta and blue images device, soila_thresh = pcv.binary_threshold(soil_a, 118, 255, "dark", device, args.debug) device, soilb_thresh = pcv.binary_threshold(soil_b, 150, 255, "light", device, args.debug) # Join the thresholded saturation and blue-yellow images (OR) device, soil_ab = pcv.logical_or(soila_thresh, soilb_thresh, device, args.debug) device, soil_ab_cnt = pcv.logical_or(soila_thresh, soilb_thresh, device, args.debug) # Fill small objects device, soil_cnt = pcv.fill(soil_ab, soil_ab_cnt, 75, device, args.debug) # Median Filter # device, soil_mblur = pcv.median_blur(soil_fill, 5, device, args.debug) # device, soil_cnt = pcv.median_blur(soil_fill, 5, device, args.debug) # Apply mask (for vis images, mask_color=white) device, masked2 = pcv.apply_mask(soil_masked, soil_cnt, "white", device, args.debug) # Identify objects device, id_objects, obj_hierarchy = pcv.find_objects(masked2, soil_cnt, device, args.debug) # Define ROI device, roi1, roi_hierarchy = pcv.define_roi( img, "circle", device, None, "default", args.debug, True, 0, 0, -200, -200 ) # Decide which objects to keep device, roi_objects, hierarchy3, kept_mask, obj_area = pcv.roi_objects( img, "partial", roi1, roi_hierarchy, id_objects, obj_hierarchy, device, args.debug ) # Object combine kept objects device, obj, mask = pcv.object_composition(img, roi_objects, hierarchy3, device, args.debug) ############## VIS Analysis ################ outfile = False if args.writeimg == True: outfile = args.outdir + "/" + filename # Find shape properties, output shape image (optional) device, shape_header, shape_data, shape_img = pcv.analyze_object( img, args.image, obj, mask, device, args.debug, outfile ) # Determine color properties: Histograms, Color Slices and Pseudocolored Images, output color analyzed images (optional) device, color_header, color_data, color_img = pcv.analyze_color( img, args.image, mask, 256, device, args.debug, None, "v", "img", 300, outfile ) # Output shape and color data result = open(args.result, "a") result.write("\t".join(map(str, shape_header))) result.write("\n") result.write("\t".join(map(str, shape_data))) result.write("\n") for row in shape_img: result.write("\t".join(map(str, row))) result.write("\n") result.write("\t".join(map(str, color_header))) result.write("\n") result.write("\t".join(map(str, color_data))) result.write("\n") for row in color_img: result.write("\t".join(map(str, row))) result.write("\n") result.close() ############################# Use VIS image mask for NIR image######################### # Find matching NIR image device, nirpath = pcv.get_nir(path, filename, device, args.debug) nir, path1, filename1 = pcv.readimage(nirpath) nir2 = cv2.imread(nirpath, -1) # Flip mask device, f_mask = pcv.flip(mask, "horizontal", device, args.debug) # Reize mask device, nmask = pcv.resize(f_mask, 0.1304, 0.1304, device, args.debug) # position, and crop mask device, newmask = pcv.crop_position_mask(nir, nmask, device, 9, 12, "top", "left", args.debug) # Identify objects device, nir_objects, nir_hierarchy = pcv.find_objects(nir, newmask, device, args.debug) # Object combine kept objects device, nir_combined, nir_combinedmask = pcv.object_composition(nir, nir_objects, nir_hierarchy, device, args.debug) ####################################### Analysis ############################################# outfile1 = False if args.writeimg == True: outfile1 = args.outdir + "/" + filename1 device, nhist_header, nhist_data, nir_imgs = pcv.analyze_NIR_intensity( nir2, filename1, nir_combinedmask, 256, device, False, args.debug, outfile1 ) device, nshape_header, nshape_data, nir_shape = pcv.analyze_object( nir2, filename1, nir_combined, nir_combinedmask, device, args.debug, outfile1 ) coresult = open(args.coresult, "a") coresult.write("\t".join(map(str, nhist_header))) coresult.write("\n") coresult.write("\t".join(map(str, nhist_data))) coresult.write("\n") for row in nir_imgs: coresult.write("\t".join(map(str, row))) coresult.write("\n") coresult.write("\t".join(map(str, nshape_header))) coresult.write("\n") coresult.write("\t".join(map(str, nshape_data))) coresult.write("\n") coresult.write("\t".join(map(str, nir_shape))) coresult.write("\n") coresult.close()
def process_sv_images_core(vis_id, vis_img, nir_id, nir_rgb, nir_cv2, traits, debug=None): # Pipeline step device = 0 # Convert RGB to HSV and extract the Saturation channel device, s = pcv.rgb2gray_hsv(vis_img, 's', device, debug) # Threshold the Saturation image device, s_thresh = pcv.binary_threshold(s, 36, 255, 'light', device, debug) # Median Filter device, s_mblur = pcv.median_blur(s_thresh, 5, device, debug) device, s_cnt = pcv.median_blur(s_thresh, 5, device, debug) # Fill small objects # device, s_fill = pcv.fill(s_mblur, s_cnt, 0, device, args.debug) # Convert RGB to LAB and extract the Blue channel device, b = pcv.rgb2gray_lab(vis_img, 'b', device, debug) # Threshold the blue image device, b_thresh = pcv.binary_threshold(b, 137, 255, 'light', device, debug) device, b_cnt = pcv.binary_threshold(b, 137, 255, 'light', device, debug) # Fill small objects # device, b_fill = pcv.fill(b_thresh, b_cnt, 10, device, args.debug) # Join the thresholded saturation and blue-yellow images device, bs = pcv.logical_and(s_mblur, b_cnt, device, debug) # Apply Mask (for vis images, mask_color=white) device, masked = pcv.apply_mask(vis_img, bs, 'white', device, debug) # Convert RGB to LAB and extract the Green-Magenta and Blue-Yellow channels device, masked_a = pcv.rgb2gray_lab(masked, 'a', device, debug) device, masked_b = pcv.rgb2gray_lab(masked, 'b', device, debug) # Threshold the green-magenta and blue images device, maskeda_thresh = pcv.binary_threshold(masked_a, 127, 255, 'dark', device, debug) device, maskedb_thresh = pcv.binary_threshold(masked_b, 128, 255, 'light', device, debug) # Join the thresholded saturation and blue-yellow images (OR) device, ab = pcv.logical_or(maskeda_thresh, maskedb_thresh, device, debug) device, ab_cnt = pcv.logical_or(maskeda_thresh, maskedb_thresh, device, debug) # Fill small noise device, ab_fill1 = pcv.fill(ab, ab_cnt, 200, device, debug) # Dilate to join small objects with larger ones device, ab_cnt1 = pcv.dilate(ab_fill1, 3, 2, device, debug) device, ab_cnt2 = pcv.dilate(ab_fill1, 3, 2, device, debug) # Fill dilated image mask device, ab_cnt3 = pcv.fill(ab_cnt2, ab_cnt1, 150, device, debug) device, masked2 = pcv.apply_mask(masked, ab_cnt3, 'white', device, debug) # Convert RGB to LAB and extract the Green-Magenta and Blue-Yellow channels device, masked2_a = pcv.rgb2gray_lab(masked2, 'a', device, debug) device, masked2_b = pcv.rgb2gray_lab(masked2, 'b', device, debug) # Threshold the green-magenta and blue images device, masked2a_thresh = pcv.binary_threshold(masked2_a, 127, 255, 'dark', device, debug) device, masked2b_thresh = pcv.binary_threshold(masked2_b, 128, 255, 'light', device, debug) device, masked2a_thresh_blur = pcv.median_blur(masked2a_thresh, 5, device, debug) device, masked2b_thresh_blur = pcv.median_blur(masked2b_thresh, 13, device, debug) device, ab_fill = pcv.logical_or(masked2a_thresh_blur, masked2b_thresh_blur, device, debug) # Identify objects device, id_objects, obj_hierarchy = pcv.find_objects(masked2, ab_fill, device, debug) # Define ROI device, roi1, roi_hierarchy = pcv.define_roi(masked2, 'rectangle', device, None, 'default', debug, True, 700, 0, -600, -300) # Decide which objects to keep device, roi_objects, hierarchy3, kept_mask, obj_area = pcv.roi_objects(vis_img, 'partial', roi1, roi_hierarchy, id_objects, obj_hierarchy, device, debug) # Object combine kept objects device, obj, mask = pcv.object_composition(vis_img, roi_objects, hierarchy3, device, debug) ############## VIS Analysis ################ # Find shape properties, output shape image (optional) device, shape_header, shape_data, shape_img = pcv.analyze_object(vis_img, vis_id, obj, mask, device, debug) # Shape properties relative to user boundary line (optional) device, boundary_header, boundary_data, boundary_img1 = pcv.analyze_bound(vis_img, vis_id, obj, mask, 384, device, debug) # Determine color properties: Histograms, Color Slices and # Pseudocolored Images, output color analyzed images (optional) device, color_header, color_data, color_img = pcv.analyze_color(vis_img, vis_id, mask, 256, device, debug, None, 'v', 'img', 300) # Output shape and color data vis_traits = {} for i in range(1, len(shape_header)): vis_traits[shape_header[i]] = shape_data[i] for i in range(1, len(boundary_header)): vis_traits[boundary_header[i]] = boundary_data[i] for i in range(2, len(color_header)): vis_traits[color_header[i]] = serialize_color_data(color_data[i]) ############################# Use VIS image mask for NIR image######################### # Flip mask device, f_mask = pcv.flip(mask, "vertical", device, debug) # Reize mask device, nmask = pcv.resize(f_mask, 0.1154905775, 0.1154905775, device, debug) # position, and crop mask device, newmask = pcv.crop_position_mask(nir_rgb, nmask, device, 30, 4, "top", "right", debug) # Identify objects device, nir_objects, nir_hierarchy = pcv.find_objects(nir_rgb, newmask, device, debug) # Object combine kept objects device, nir_combined, nir_combinedmask = pcv.object_composition(nir_rgb, nir_objects, nir_hierarchy, device, debug) ####################################### Analysis ############################################# device, nhist_header, nhist_data, nir_imgs = pcv.analyze_NIR_intensity(nir_cv2, nir_id, nir_combinedmask, 256, device, False, debug) device, nshape_header, nshape_data, nir_shape = pcv.analyze_object(nir_cv2, nir_id, nir_combined, nir_combinedmask, device, debug) nir_traits = {} for i in range(1, len(nshape_header)): nir_traits[nshape_header[i]] = nshape_data[i] for i in range(2, len(nhist_header)): nir_traits[nhist_header[i]] = serialize_color_data(nhist_data[i]) # Add data to traits table traits['sv_area'].append(vis_traits['area']) traits['hull_area'].append(vis_traits['hull-area']) traits['solidity'].append(vis_traits['solidity']) traits['height'].append(vis_traits['height_above_bound']) traits['perimeter'].append(vis_traits['perimeter']) return [vis_traits, nir_traits]
def main(): # Get options args = options() # Read image img, path, filename = pcv.readimage(args.image) brass_mask = cv2.imread(args.roi) # Pipeline step device = 0 # Convert RGB to HSV and extract the Saturation channel device, s = pcv.rgb2gray_hsv(img, 's', device, args.debug) # Threshold the Saturation image device, s_thresh = pcv.binary_threshold(s, 49, 255, 'light', device, args.debug) # Median Filter device, s_mblur = pcv.median_blur(s_thresh, 5, device, args.debug) device, s_cnt = pcv.median_blur(s_thresh, 5, device, args.debug) # Fill small objects device, s_fill = pcv.fill(s_mblur, s_cnt, 150, device, args.debug) # Convert RGB to LAB and extract the Blue channel device, b = pcv.rgb2gray_lab(img, 'b', device, args.debug) # Threshold the blue image device, b_thresh = pcv.binary_threshold(b, 138, 255, 'light', device, args.debug) device, b_cnt = pcv.binary_threshold(b, 138, 255, 'light', device, args.debug) # Fill small objects device, b_fill = pcv.fill(b_thresh, b_cnt, 150, device, args.debug) # Join the thresholded saturation and blue-yellow images device, bs = pcv.logical_and(s_fill, b_fill, device, args.debug) # Apply Mask (for vis images, mask_color=white) device, masked = pcv.apply_mask(img, bs, 'white', device, args.debug) # Mask pesky brass piece device, brass_mask1 = pcv.rgb2gray_hsv(brass_mask, 'v', device, args.debug) device, brass_thresh = pcv.binary_threshold(brass_mask1, 0, 255, 'light', device, args.debug) device, brass_inv = pcv.invert(brass_thresh, device, args.debug) device, brass_masked = pcv.apply_mask(masked, brass_inv, 'white', device, args.debug) # Further mask soil and car device, masked_a = pcv.rgb2gray_lab(brass_masked, 'a', device, args.debug) device, soil_car = pcv.binary_threshold(masked_a, 128, 255, 'dark', device, args.debug) device, soil_masked = pcv.apply_mask(brass_masked, soil_car, 'white', device, args.debug) # Convert RGB to LAB and extract the Green-Magenta and Blue-Yellow channels device, soil_a = pcv.rgb2gray_lab(soil_masked, 'a', device, args.debug) device, soil_b = pcv.rgb2gray_lab(soil_masked, 'b', device, args.debug) # Threshold the green-magenta and blue images device, soila_thresh = pcv.binary_threshold(soil_a, 118, 255, 'dark', device, args.debug) device, soilb_thresh = pcv.binary_threshold(soil_b, 155, 255, 'light', device, args.debug) # Join the thresholded saturation and blue-yellow images (OR) device, soil_ab = pcv.logical_or(soila_thresh, soilb_thresh, device, args.debug) device, soil_ab_cnt = pcv.logical_or(soila_thresh, soilb_thresh, device, args.debug) # Fill small objects device, soil_fill = pcv.fill(soil_ab, soil_ab_cnt, 200, device, args.debug) # Median Filter device, soil_mblur = pcv.median_blur(soil_fill, 5, device, args.debug) device, soil_cnt = pcv.median_blur(soil_fill, 5, device, args.debug) # Apply mask (for vis images, mask_color=white) device, masked2 = pcv.apply_mask(soil_masked, soil_cnt, 'white', device, args.debug) # Identify objects device, id_objects, obj_hierarchy = pcv.find_objects( masked2, soil_cnt, device, args.debug) # Define ROI device, roi1, roi_hierarchy = pcv.define_roi(img, 'circle', device, None, 'default', args.debug, True, 0, 0, -50, -50) # Decide which objects to keep device, roi_objects, hierarchy3, kept_mask, obj_area = pcv.roi_objects( img, 'partial', roi1, roi_hierarchy, id_objects, obj_hierarchy, device, args.debug) # Object combine kept objects device, obj, mask = pcv.object_composition(img, roi_objects, hierarchy3, device, args.debug) # ############# Analysis ################ # output mask device, maskpath, mask_images = pcv.output_mask(device, img, mask, filename, args.outdir, True, args.debug) # Find shape properties, output shape image (optional) device, shape_header, shape_data, shape_img = pcv.analyze_object( img, args.image, obj, mask, device, args.debug) # Determine color properties: Histograms, Color Slices and Pseudocolored Images, # output color analyzed images (optional) device, color_header, color_data, color_img = pcv.analyze_color( img, args.image, mask, 256, device, args.debug, None, 'v', 'img', 300) result = open(args.result, "a") result.write('\t'.join(map(str, shape_header))) result.write("\n") result.write('\t'.join(map(str, shape_data))) result.write("\n") for row in mask_images: result.write('\t'.join(map(str, row))) result.write("\n") result.write('\t'.join(map(str, color_header))) result.write("\n") result.write('\t'.join(map(str, color_data))) result.write("\n") result.close()
def process_tv_images_core(vis_id, vis_img, nir_id, nir_rgb, nir_cv2, brass_mask, traits, debug=None): device = 0 # Convert RGB to HSV and extract the Saturation channel device, s = pcv.rgb2gray_hsv(vis_img, 's', device, debug) # Threshold the Saturation image device, s_thresh = pcv.binary_threshold(s, 75, 255, 'light', device, debug) # Median Filter device, s_mblur = pcv.median_blur(s_thresh, 5, device, debug) device, s_cnt = pcv.median_blur(s_thresh, 5, device, debug) # Fill small objects device, s_fill = pcv.fill(s_mblur, s_cnt, 150, device, debug) # Convert RGB to LAB and extract the Blue channel device, b = pcv.rgb2gray_lab(vis_img, 'b', device, debug) # Threshold the blue image device, b_thresh = pcv.binary_threshold(b, 138, 255, 'light', device, debug) device, b_cnt = pcv.binary_threshold(b, 138, 255, 'light', device, debug) # Fill small objects device, b_fill = pcv.fill(b_thresh, b_cnt, 100, device, debug) # Join the thresholded saturation and blue-yellow images device, bs = pcv.logical_and(s_fill, b_fill, device, debug) # Apply Mask (for vis images, mask_color=white) device, masked = pcv.apply_mask(vis_img, bs, 'white', device, debug) # Mask pesky brass piece device, brass_mask1 = pcv.rgb2gray_hsv(brass_mask, 'v', device, debug) device, brass_thresh = pcv.binary_threshold(brass_mask1, 0, 255, 'light', device, debug) device, brass_inv = pcv.invert(brass_thresh, device, debug) device, brass_masked = pcv.apply_mask(masked, brass_inv, 'white', device, debug) # Further mask soil and car device, masked_a = pcv.rgb2gray_lab(brass_masked, 'a', device, debug) device, soil_car1 = pcv.binary_threshold(masked_a, 128, 255, 'dark', device, debug) device, soil_car2 = pcv.binary_threshold(masked_a, 128, 255, 'light', device, debug) device, soil_car = pcv.logical_or(soil_car1, soil_car2, device, debug) device, soil_masked = pcv.apply_mask(brass_masked, soil_car, 'white', device, debug) # Convert RGB to LAB and extract the Green-Magenta and Blue-Yellow channels device, soil_a = pcv.rgb2gray_lab(soil_masked, 'a', device, debug) device, soil_b = pcv.rgb2gray_lab(soil_masked, 'b', device, debug) # Threshold the green-magenta and blue images device, soila_thresh = pcv.binary_threshold(soil_a, 124, 255, 'dark', device, debug) device, soilb_thresh = pcv.binary_threshold(soil_b, 148, 255, 'light', device, debug) # Join the thresholded saturation and blue-yellow images (OR) device, soil_ab = pcv.logical_or(soila_thresh, soilb_thresh, device, debug) device, soil_ab_cnt = pcv.logical_or(soila_thresh, soilb_thresh, device, debug) # Fill small objects device, soil_cnt = pcv.fill(soil_ab, soil_ab_cnt, 300, device, debug) # Apply mask (for vis images, mask_color=white) device, masked2 = pcv.apply_mask(soil_masked, soil_cnt, 'white', device, debug) # Identify objects device, id_objects, obj_hierarchy = pcv.find_objects(masked2, soil_cnt, device, debug) # Define ROI device, roi1, roi_hierarchy = pcv.define_roi(vis_img, 'rectangle', device, None, 'default', debug, True, 600, 450, -600, -350) # Decide which objects to keep device, roi_objects, hierarchy3, kept_mask, obj_area = pcv.roi_objects(vis_img, 'partial', roi1, roi_hierarchy, id_objects, obj_hierarchy, device, debug) # Object combine kept objects device, obj, mask = pcv.object_composition(vis_img, roi_objects, hierarchy3, device, debug) # Find shape properties, output shape image (optional) device, shape_header, shape_data, shape_img = pcv.analyze_object(vis_img, vis_id, obj, mask, device, debug) # Determine color properties device, color_header, color_data, color_img = pcv.analyze_color(vis_img, vis_id, mask, 256, device, debug, None, 'v', 'img', 300) # Output shape and color data vis_traits = {} for i in range(1, len(shape_header)): vis_traits[shape_header[i]] = shape_data[i] for i in range(2, len(color_header)): vis_traits[color_header[i]] = serialize_color_data(color_data[i]) ############################# Use VIS image mask for NIR image######################### # Flip mask device, f_mask = pcv.flip(mask, "horizontal", device, debug) # Reize mask device, nmask = pcv.resize(f_mask, 0.116148, 0.116148, device, debug) # position, and crop mask device, newmask = pcv.crop_position_mask(nir_rgb, nmask, device, 15, 5, "top", "right", debug) # Identify objects device, nir_objects, nir_hierarchy = pcv.find_objects(nir_rgb, newmask, device, debug) # Object combine kept objects device, nir_combined, nir_combinedmask = pcv.object_composition(nir_rgb, nir_objects, nir_hierarchy, device, debug) ####################################### Analysis ############################################# device, nhist_header, nhist_data, nir_imgs = pcv.analyze_NIR_intensity(nir_cv2, nir_id, nir_combinedmask, 256, device, False, debug) device, nshape_header, nshape_data, nir_shape = pcv.analyze_object(nir_cv2, nir_id, nir_combined, nir_combinedmask, device, debug) nir_traits = {} for i in range(1, len(nshape_header)): nir_traits[nshape_header[i]] = nshape_data[i] for i in range(2, len(nhist_header)): nir_traits[nhist_header[i]] = serialize_color_data(nhist_data[i]) # Add data to traits table traits['tv_area'] = vis_traits['area'] return [vis_traits, nir_traits]
def main(): # Get options args = options() # Read image img, path, filename = pcv.readimage(args.image) brass_mask = cv2.imread(args.roi) # Pipeline step device = 0 # Convert RGB to HSV and extract the Saturation channel device, s = pcv.rgb2gray_hsv(img, "s", device, args.debug) # Threshold the Saturation image device, s_thresh = pcv.binary_threshold(s, 49, 255, "light", device, args.debug) # Median Filter device, s_mblur = pcv.median_blur(s_thresh, 5, device, args.debug) device, s_cnt = pcv.median_blur(s_thresh, 5, device, args.debug) # Fill small objects device, s_fill = pcv.fill(s_mblur, s_cnt, 150, device, args.debug) # Convert RGB to LAB and extract the Blue channel device, b = pcv.rgb2gray_lab(img, "b", device, args.debug) # Threshold the blue image device, b_thresh = pcv.binary_threshold(b, 138, 255, "light", device, args.debug) device, b_cnt = pcv.binary_threshold(b, 138, 255, "light", device, args.debug) # Fill small objects device, b_fill = pcv.fill(b_thresh, b_cnt, 150, device, args.debug) # Join the thresholded saturation and blue-yellow images device, bs = pcv.logical_and(s_fill, b_fill, device, args.debug) # Apply Mask (for vis images, mask_color=white) device, masked = pcv.apply_mask(img, bs, "white", device, args.debug) # Mask pesky brass piece device, brass_mask1 = pcv.rgb2gray_hsv(brass_mask, "v", device, args.debug) device, brass_thresh = pcv.binary_threshold(brass_mask1, 0, 255, "light", device, args.debug) device, brass_inv = pcv.invert(brass_thresh, device, args.debug) device, brass_masked = pcv.apply_mask(masked, brass_inv, "white", device, args.debug) # Further mask soil and car device, masked_a = pcv.rgb2gray_lab(brass_masked, "a", device, args.debug) device, soil_car1 = pcv.binary_threshold(masked_a, 128, 255, "dark", device, args.debug) device, soil_car2 = pcv.binary_threshold(masked_a, 128, 255, "light", device, args.debug) device, soil_car = pcv.logical_or(soil_car1, soil_car2, device, args.debug) device, soil_masked = pcv.apply_mask(brass_masked, soil_car, "white", device, args.debug) # Convert RGB to LAB and extract the Green-Magenta and Blue-Yellow channels device, soil_a = pcv.rgb2gray_lab(soil_masked, "a", device, args.debug) device, soil_b = pcv.rgb2gray_lab(soil_masked, "b", device, args.debug) # Threshold the green-magenta and blue images device, soila_thresh = pcv.binary_threshold(soil_a, 124, 255, "dark", device, args.debug) device, soilb_thresh = pcv.binary_threshold(soil_b, 148, 255, "light", device, args.debug) # Join the thresholded saturation and blue-yellow images (OR) device, soil_ab = pcv.logical_or(soila_thresh, soilb_thresh, device, args.debug) device, soil_ab_cnt = pcv.logical_or(soila_thresh, soilb_thresh, device, args.debug) # Fill small objects device, soil_cnt = pcv.fill(soil_ab, soil_ab_cnt, 250, device, args.debug) # Median Filter # device, soil_mblur = pcv.median_blur(soil_fill, 5, device, args.debug) # device, soil_cnt = pcv.median_blur(soil_fill, 5, device, args.debug) # Apply mask (for vis images, mask_color=white) device, masked2 = pcv.apply_mask(soil_masked, soil_cnt, "white", device, args.debug) # Identify objects device, id_objects, obj_hierarchy = pcv.find_objects(masked2, soil_cnt, device, args.debug) # Define ROI device, roi1, roi_hierarchy = pcv.define_roi( img, "rectangle", device, None, "default", args.debug, True, 600, 450, -600, -350 ) # Decide which objects to keep device, roi_objects, hierarchy3, kept_mask, obj_area = pcv.roi_objects( img, "partial", roi1, roi_hierarchy, id_objects, obj_hierarchy, device, args.debug ) # Object combine kept objects device, obj, mask = pcv.object_composition(img, roi_objects, hierarchy3, device, args.debug) ############## VIS Analysis ################ outfile = False if args.writeimg == True: outfile = args.outdir + "/" + filename # Find shape properties, output shape image (optional) device, shape_header, shape_data, shape_img = pcv.analyze_object( img, args.image, obj, mask, device, args.debug, outfile ) # Determine color properties: Histograms, Color Slices and Pseudocolored Images, output color analyzed images (optional) device, color_header, color_data, color_img = pcv.analyze_color( img, args.image, mask, 256, device, args.debug, None, "v", "img", 300, outfile ) # Output shape and color data result = open(args.result, "a") result.write("\t".join(map(str, shape_header))) result.write("\n") result.write("\t".join(map(str, shape_data))) result.write("\n") for row in shape_img: result.write("\t".join(map(str, row))) result.write("\n") result.write("\t".join(map(str, color_header))) result.write("\n") result.write("\t".join(map(str, color_data))) result.write("\n") for row in color_img: result.write("\t".join(map(str, row))) result.write("\n")
def main(): # Get options args = options() # Read image img, path, filename = pcv.readimage(args.image) brass_mask = cv2.imread(args.roi) # Pipeline step device = 0 # Convert RGB to HSV and extract the Saturation channel device, s = pcv.rgb2gray_hsv(img, 's', device, args.debug) # Threshold the Saturation image device, s_thresh = pcv.binary_threshold(s, 49, 255, 'light', device, args.debug) # Median Filter device, s_mblur = pcv.median_blur(s_thresh, 5, device, args.debug) device, s_cnt = pcv.median_blur(s_thresh, 5, device, args.debug) # Fill small objects device, s_fill = pcv.fill(s_mblur, s_cnt, 150, device, args.debug) # Convert RGB to LAB and extract the Blue channel device, b = pcv.rgb2gray_lab(img, 'b', device, args.debug) # Threshold the blue image device, b_thresh = pcv.binary_threshold(b, 138, 255, 'light', device, args.debug) device, b_cnt = pcv.binary_threshold(b, 138, 255, 'light', device, args.debug) # Fill small objects device, b_fill = pcv.fill(b_thresh, b_cnt, 100, device, args.debug) # Join the thresholded saturation and blue-yellow images device, bs = pcv.logical_and(s_fill, b_fill, device, args.debug) # Apply Mask (for vis images, mask_color=white) device, masked = pcv.apply_mask(img, bs, 'white', device, args.debug) # Mask pesky brass piece device, brass_mask1 = pcv.rgb2gray_hsv(brass_mask, 'v', device, args.debug) device, brass_thresh = pcv.binary_threshold(brass_mask1, 0, 255, 'light', device, args.debug) device, brass_inv = pcv.invert(brass_thresh, device, args.debug) device, brass_masked = pcv.apply_mask(masked, brass_inv, 'white', device, args.debug) # Further mask soil and car device, masked_a = pcv.rgb2gray_lab(brass_masked, 'a', device, args.debug) device, soil_car1 = pcv.binary_threshold(masked_a, 128, 255, 'dark', device, args.debug) device, soil_car2 = pcv.binary_threshold(masked_a, 128, 255, 'light', device, args.debug) device, soil_car = pcv.logical_or(soil_car1, soil_car2, device, args.debug) device, soil_masked = pcv.apply_mask(brass_masked, soil_car, 'white', device, args.debug) # Convert RGB to LAB and extract the Green-Magenta and Blue-Yellow channels device, soil_a = pcv.rgb2gray_lab(soil_masked, 'a', device, args.debug) device, soil_b = pcv.rgb2gray_lab(soil_masked, 'b', device, args.debug) # Threshold the green-magenta and blue images device, soila_thresh = pcv.binary_threshold(soil_a, 124, 255, 'dark', device, args.debug) device, soilb_thresh = pcv.binary_threshold(soil_b, 148, 255, 'light', device, args.debug) # Join the thresholded saturation and blue-yellow images (OR) device, soil_ab = pcv.logical_or(soila_thresh, soilb_thresh, device, args.debug) device, soil_ab_cnt = pcv.logical_or(soila_thresh, soilb_thresh, device, args.debug) # Fill small objects device, soil_cnt = pcv.fill(soil_ab, soil_ab_cnt, 150, device, args.debug) # Median Filter #device, soil_mblur = pcv.median_blur(soil_fill, 5, device, args.debug) #device, soil_cnt = pcv.median_blur(soil_fill, 5, device, args.debug) # Apply mask (for vis images, mask_color=white) device, masked2 = pcv.apply_mask(soil_masked, soil_cnt, 'white', device, args.debug) # Identify objects device, id_objects, obj_hierarchy = pcv.find_objects( masked2, soil_cnt, device, args.debug) # Define ROI device, roi1, roi_hierarchy = pcv.define_roi(img, 'rectangle', device, None, 'default', args.debug, True, 600, 450, -600, -350) # Decide which objects to keep device, roi_objects, hierarchy3, kept_mask, obj_area = pcv.roi_objects( img, 'partial', roi1, roi_hierarchy, id_objects, obj_hierarchy, device, args.debug) # Object combine kept objects device, obj, mask = pcv.object_composition(img, roi_objects, hierarchy3, device, args.debug) ############## VIS Analysis ################ outfile = False if args.writeimg == True: outfile = args.outdir + "/" + filename # Find shape properties, output shape image (optional) device, shape_header, shape_data, shape_img = pcv.analyze_object( img, args.image, obj, mask, device, args.debug, outfile) # Determine color properties: Histograms, Color Slices and Pseudocolored Images, output color analyzed images (optional) device, color_header, color_data, color_img = pcv.analyze_color( img, args.image, mask, 256, device, args.debug, None, 'v', 'img', 300, outfile) # Output shape and color data result = open(args.result, "a") result.write('\t'.join(map(str, shape_header))) result.write("\n") result.write('\t'.join(map(str, shape_data))) result.write("\n") for row in shape_img: result.write('\t'.join(map(str, row))) result.write("\n") result.write('\t'.join(map(str, color_header))) result.write("\n") result.write('\t'.join(map(str, color_data))) result.write("\n") for row in color_img: result.write('\t'.join(map(str, row))) result.write("\n") result.close() ############################# Use VIS image mask for NIR image######################### # Find matching NIR image device, nirpath = pcv.get_nir(path, filename, device, args.debug) nir, path1, filename1 = pcv.readimage(nirpath) nir2 = cv2.imread(nirpath, -1) # Flip mask device, f_mask = pcv.flip(mask, "horizontal", device, args.debug) # Reize mask device, nmask = pcv.resize(f_mask, 0.116148, 0.116148, device, args.debug) # position, and crop mask device, newmask = pcv.crop_position_mask(nir, nmask, device, 15, 5, "top", "right", args.debug) # Identify objects device, nir_objects, nir_hierarchy = pcv.find_objects( nir, newmask, device, args.debug) # Object combine kept objects device, nir_combined, nir_combinedmask = pcv.object_composition( nir, nir_objects, nir_hierarchy, device, args.debug) ####################################### Analysis ############################################# outfile1 = False if args.writeimg == True: outfile1 = args.outdir + "/" + filename1 device, nhist_header, nhist_data, nir_imgs = pcv.analyze_NIR_intensity( nir2, filename1, nir_combinedmask, 256, device, False, args.debug, outfile1) device, nshape_header, nshape_data, nir_shape = pcv.analyze_object( nir2, filename1, nir_combined, nir_combinedmask, device, args.debug, outfile1) coresult = open(args.coresult, "a") coresult.write('\t'.join(map(str, nhist_header))) coresult.write("\n") coresult.write('\t'.join(map(str, nhist_data))) coresult.write("\n") for row in nir_imgs: coresult.write('\t'.join(map(str, row))) coresult.write("\n") coresult.write('\t'.join(map(str, nshape_header))) coresult.write("\n") coresult.write('\t'.join(map(str, nshape_data))) coresult.write("\n") coresult.write('\t'.join(map(str, nir_shape))) coresult.write("\n") coresult.close()
def main(): # Get options args = options() # Read image img = cv2.imread(args.image) roi = cv2.imread(args.roi) # Pipeline step device = 0 # Convert RGB to HSV and extract the Saturation channel device, s = pcv.rgb2gray_hsv(img, 's', device, args.debug) # Threshold the Saturation image device, s_thresh = pcv.binary_threshold(s, 36, 255, 'light', device, args.debug) # Median Filter device, s_mblur = pcv.median_blur(s_thresh, 5, device, args.debug) device, s_cnt = pcv.median_blur(s_thresh, 5, device, args.debug) # Fill small objects device, s_fill = pcv.fill(s_mblur, s_cnt, 0, device, args.debug) # Convert RGB to LAB and extract the Blue channel device, b = pcv.rgb2gray_lab(img, 'b', device, args.debug) # Threshold the blue image device, b_thresh = pcv.binary_threshold(b, 138, 255, 'light', device, args.debug) device, b_cnt = pcv.binary_threshold(b, 138, 255, 'light', device, args.debug) # Fill small objects device, b_fill = pcv.fill(b_thresh, b_cnt, 150, device, args.debug) # Join the thresholded saturation and blue-yellow images device, bs = pcv.logical_and(s_fill, b_fill, device, args.debug) # Apply Mask (for vis images, mask_color=white) device, masked = pcv.apply_mask(img, bs, 'white', device, args.debug) # Convert RGB to LAB and extract the Green-Magenta and Blue-Yellow channels device, masked_a = pcv.rgb2gray_lab(masked, 'a', device, args.debug) device, masked_b = pcv.rgb2gray_lab(masked, 'b', device, args.debug) # Threshold the green-magenta and blue images device, maskeda_thresh = pcv.binary_threshold(masked_a, 122, 255, 'dark', device, args.debug) device, maskedb_thresh = pcv.binary_threshold(masked_b, 133, 255, 'light', device, args.debug) # Join the thresholded saturation and blue-yellow images (OR) device, ab = pcv.logical_or(maskeda_thresh, maskedb_thresh, device, args.debug) device, ab_cnt = pcv.logical_or(maskeda_thresh, maskedb_thresh, device, args.debug) # Fill small objects device, ab_fill = pcv.fill(ab, ab_cnt, 200, device, args.debug) # Apply mask (for vis images, mask_color=white) device, masked2 = pcv.apply_mask(masked, ab_fill, 'white', device, args.debug) # Identify objects device, id_objects,obj_hierarchy = pcv.find_objects(masked2, ab_fill, device, args.debug) # Define ROI device, roi1, roi_hierarchy= pcv.define_roi(img,'rectangle', device, None, 'default', args.debug,False, 0, 0,0,0) # Decide which objects to keep device,roi_objects, hierarchy3, kept_mask, obj_area = pcv.roi_objects(img,'partial',roi1,roi_hierarchy,id_objects,obj_hierarchy,device, args.debug) # Object combine kept objects device, obj, mask = pcv.object_composition(img, roi_objects, hierarchy3, device, args.debug) ############## Analysis ################ # Find shape properties, output shape image (optional) device, shape_header,shape_data,shape_img = pcv.analyze_object(img, args.image, obj, mask, device,args.debug,True) # Determine color properties: Histograms, Color Slices and Pseudocolored Images, output color analyzed images (optional) device, color_header,color_data,norm_slice= pcv.analyze_color(img, args.image, kept_mask, 256, device, args.debug,'all','rgb','v') # Output shape and color data pcv.print_results(args.image, shape_header, shape_data) pcv.print_results(args.image, color_header, color_data)