def compare_rms(): rmsdata=numpy.zeros(len(wpls)**2).reshape(len(wpls),len(wpls)) for i in range(redshifts_wstars): fr_wstars=np.loadtxt("../generate_data/data_wstars/powerSpectraFrequencies_dbt_"+str('%.3f' % redshifts[i])) data_wstars = np.loadtxt("../generate_data/data_wstars/powerSpectra_"+str('%.3f' % redshifts[i]))*1.0e-3 rmsdata[0,i]=sci.simps(data_wstars,fr_wstars)/1.0e-3 fr_wpls=np.loadtxt("../generate_data/data_wstars/powerSpectraFrequencies_dbt_"+str('%.3f' % redshifts[i])) data_wpls = np.loadtxt("../generate_data/data_wstars/powerSpectra_"+str('%.3f' % redshifts[i]))*1.0e-3 rmsdata[1,i]=sci.simps(data_pls,fr_wpls)/1.0e-3 plot_1D.plot_mean(rmsdata,"rms","rms (mK)",'compare_wstars_wpls/',redshifts_wpls,redshifts_wpls,"Stellar only","Stellar and X-ray") wstars_temp = plot_1D.mean('temp','data_wstars/',redshifts_wstars) wpls_temp = plot_1D.mean('temp','data_wpls/',redshifts_wpls) length = min(len(wstars_temp),len(wpls_temp)) print length means = np.zeros(2*length).reshape(length,2) for i in range(length): means[i,0] = wstars_temp[i] for i in range(length): means[i,1] = wpls_temp[i] #print means[i,1] #print redshifts_wstars[i], redshifts_wpls[i] plot_1D.plot_mean(means,"Temperature","Temperature (K)",'compare_wstars_wpls/',redshifts_wpls,redshifts_wpls,"Stellar only","Stellar and X-ray")
def compare_mean_temp(): minmax = "min" data1 = plot_1D.mean('temp','tests/data_10/',redshifts) data2 = plot_1D.mean('temp','tests/data_200/',redshifts) # data3 = plot_1D.mean('temp','tests/data_121/',redshifts) # data4 = plot_1D.mean('temp','tests/data_201/',redshifts) length = max(len(data1),len(data2)) means = np.zeros(2*length).reshape(length,2) for i in range(len(data1)): means[i,0] = data1[i] means[i,1] = data2[i] # means[i,2] = data3[i] # means[i,3] = data4[i] print means[:,0] print means[:,1] # print data3 # print data4 #print means[i,1] #print redshifts_wstars[i], redshifts_wpls[i] plot_1D.plot_mean(means,"Temperature","Temperature (K)",'tests/',redshifts,redshifts,"11","501")
def compare_mean_dbt(): wstars_temp = plot_1D.mean('dbt','data_'+flag1+'/',redshifts1) wpls_temp = plot_1D.mean('dbt','data_'+flag2+'/',redshifts2) print wstars_temp print wpls_temp print "--------------" length = min(len(wstars_temp),len(wpls_temp))/2 if (length%2!=0): length=length-1 means = np.zeros(2*length).reshape(length,2) redshifts3 = np.zeros(length) redshifts4 = np.zeros(len(wpls_temp)/2) for i in range(length*2): if i%2==0: means[i/2,0] = wstars_temp[i] if (i<len(wpls_temp)): means[i/2,1] = wpls_temp[i] redshifts3[i/2]=redshifts1[i] for i in range(length): redshifts4[i/2]=redshifts2[i] print means[:,1] print means[:,0] print "-----------" #print redshifts_wstars[i], redshifts_wpls[i] plot_1D.plot_mean(means,"dbt","$\delta T_b$",'compare_'+flag1+'_'+flag2+'/',redshifts3,redshifts4,label1,label2)
def compare_mean_temp(): wstars_temp = plot_1D.mean('temp','data_wstars/',redshifts_wstars) wpls_temp = plot_1D.mean('temp','data_wpls/',redshifts_wpls) length = min(len(wstars_temp),len(wpls_temp)) means = np.zeros(2*length).reshape(length,2) for i in range(length): means[i,0] = wstars_temp[i] for i in range(length): means[i,1] = wpls_temp[i] #print means[i,1] #print redshifts_wstars[i], redshifts_wpls[i] plot_1D.plot_mean(means,"Temperature","Temperature (K)",'compare_wstars_wpls/',redshifts_wpls,"Stellar only","Stellar and X-ray")
def compare_mean_dbt(): wstars_temp = plot_1D.mean('dbt','data_wstars/',redshifts_wstars) wpls_temp = plot_1D.mean('dbt','data_wpls/',redshifts_wpls) length = max(len(wstars_temp),len(wpls_temp))/2 means = np.zeros(2*length).reshape(length,2) redshifts2 = np.zeros(length) for i in range(length*2): if i%2==0: means[i/2,0] = wstars_temp[i] if (i<len(wpls_temp)): means[i/2,1] = wpls_temp[i] redshifts2[i/2]=redshifts_wstars[i] #print means[i,1] #print redshifts_wstars[i], redshifts_wpls[i] plot_1D.plot_mean(means,"dbt","$\delta T_b$",'compare_wstars_wpls/',redshifts2,"Stellar only","Stellar and X-ray")
def compare_mean_temp(): minmax = "min" # print redshifts1 # print '-----------------------------' # print redshifts2 data1 = plot_1D.mean('temp','data_'+flag1+'/',redshifts1) data2 = plot_1D.mean('temp','data_'+flag2+'/',redshifts2) #print redshifts1 #print '-----------------------------' #print redshifts2 if minmax=="max": length = max(len(data1),len(data2)) means = np.zeros(2*length).reshape(length,2) for i in range(len(data1)): means[i,0] = data1[i] for i in range(len(data2)): means[i,1] = data2[i] print redshifts1 print '-----------------------------' print redshifts2 #print means[i,1] #print redshifts_wstars[i], redshifts_wpls[i] print np.shape(means) # print len(redshifts1), len(redshifts2) # print redshifts2 # print len(redshifts2) # plot_1D.plot_mean(means,"Temperature","Temperature (K)",'compare_'+flag1+'_'+flag2+'/',redshifts2,redshifts2,label1,label2) elif minmax=="min": length = min(len(data1),len(data2)) means = np.zeros(2*length).reshape(length,2) for i in range(length): means[i,0] = data1[i] for i in range(length): means[i,1] = data2[i] print means[i,1] print means[i,0] #prin redshifts_wstars[i], redshifts_wpls[i] plot_1D.plot_mean(means,"Temperature","Temperature (K)",'compare_'+flag1+'_'+flag2+'/',redshifts2,redshifts2,label1,label2)
def compare_mean_xfrac(): wstars_xfrac = plot_1D.mean('xfrac','data_'+flag1+'/',redshifts1) wpls_xfrac = plot_1D.mean('xfrac','data_'+flag2+'/',redshifts2) wstars_xfracHe1 = plot_1D.mean('xfracHe1','data_'+flag1+'/',redshifts1) wpls_xfracHe1 = plot_1D.mean('xfracHe1','data_'+flag2+'/',redshifts2) wstars_xfracHe2 = plot_1D.mean('xfracHe2','data_'+flag1+'/',redshifts1) wpls_xfracHe2 = plot_1D.mean('xfracHe2','data_'+flag2+'/',redshifts2) length = min(len(wstars_xfrac),len(wpls_xfrac)) means = np.zeros(6*length).reshape(length,6) for i in range(length): if i<len(wpls_xfrac): means[i,0] = wpls_xfrac[i] means[i,1] = wpls_xfracHe1[i] means[i,2] = wpls_xfracHe2[i] means[i,3] = wstars_xfrac[i] means[i,4] = wstars_xfracHe1[i] means[i,5] = wstars_xfracHe2[i] means[0,2] = means[1,2] means[0,5] = means[1,5] #print means[:,2], means[:,5] #print redshifts_wstars[i], redshifts_wpls[i] plot_1D.plot_mean(means,"xfrac","log$_{10}$ (Ionised Fraction)",'compare_'+flag1+'_'+flag2+'/',redshifts1,redshifts2,"Stellar & X-ray binaries","Stellar only")
def compare_mean_test(): wstars_temp = plot_1D.mean('temp','data_wstars/',redshifts_wstars) wpls_temp = plot_1D.mean('temp','data_wpls/',redshifts_wpls) length = max(len(wstars_temp),len(wpls_temp)) wstars_tcmb = 2.725*(np.ones(len(redshifts_wstars))+redshifts_wstars) wpls_tcmb = 2.725*(np.ones(len(redshifts_wpls))+redshifts_wpls) wstars_test = (wstars_temp-wstars_tcmb)/wstars_temp wpls_test = (wpls_temp-wpls_tcmb)/wpls_temp means = np.zeros(2*length).reshape(length,2) for i in range(length): means[i,0] = wstars_test[i] for i in range(length): if (i<len(wpls_temp)): means[i,1] = wpls_test[i] #print means[i,1] #print redshifts_wstars[i], redshifts_wpls[i] plot_1D.plot_mean(means,"Test","$(T_S - T_{CMB}) / T_S$",'compare_wstars_wpls/',redshifts_wstars,redshifts_wpls,"Stellar only","Stellar and X-ray")
def plot1(): print "Comparing: " + flag1 + " and "+ flag2 minmax = "min" #load temperature means data1 = plot_1D.mean('temp_igm','data_'+flag1+'/',redshifts1) data2 = plot_1D.mean('temp_igm','data_'+flag2+'/',redshifts2) print data1 #load xfrac means wstars_xfrac = plot_1D.mean('xfrac','data_'+flag1+'/',redshifts1) wpls_xfrac = plot_1D.mean('xfrac','data_'+flag2+'/',redshifts2) wstars_xfracHe1 = plot_1D.mean('xfracHe1','data_'+flag1+'/',redshifts1) wpls_xfracHe1 = plot_1D.mean('xfracHe1','data_'+flag2+'/',redshifts2) wstars_xfracHe2 = plot_1D.mean('xfracHe2','data_'+flag1+'/',redshifts1) wpls_xfracHe2 = plot_1D.mean('xfracHe2','data_'+flag2+'/',redshifts2) length = min(len(data1),len(data2)) if minmax=="max": length = min(len(data1),len(data2)) #print redshifts2 meantemp = np.zeros(2*length).reshape(length,2) meanxfrac = np.zeros(6*length).reshape(length,6) if minmax=="max": for i in range(len(data1)): meantemp[i,0] = data1[i] meanxfrac[i,3] = wstars_xfrac[i] meanxfrac[i,4] = wstars_xfracHe1[i] meanxfrac[i,5] = wstars_xfracHe2[i] for i in range(len(data2)): meanxfrac[i,0] = wpls_xfrac[i] meanxfrac[i,1] = wpls_xfracHe1[i] meanxfrac[i,2] = wpls_xfracHe2[i] meantemp[i,1] = data2[i] #print means[i,1] #print redshifts_wstars[i], redshifts_wpls[i] # plot_1D.plot_mean(means,"Temperature","Temperature (K)",'compare_'+flag1+'_'+flag2+'/',redshifts1,redshifts1,label1,label2) elif minmax=="min": for i in range(length): meantemp[i,0] = data1[i] meantemp[i,1] = data2[i] meanxfrac[i,0] = wpls_xfrac[i] meanxfrac[i,1] = wpls_xfracHe1[i] meanxfrac[i,2] = wpls_xfracHe2[i] meanxfrac[i,3] = wstars_xfrac[i] meanxfrac[i,4] = wstars_xfracHe1[i] meanxfrac[i,5] = wstars_xfracHe2[i] meanxfrac[0,5]=meanxfrac[0,4] meanxfrac[0,2]=meanxfrac[0,1] #print len(redshifts2), len(meantemp[:,1]) print meantemp[:,1] print meantemp[:,0] T0=2.725 Tcmb = np.zeros(len(redshifts1)) for z in range(len(redshifts1)): Tcmb[z] = T0*(1.0+redshifts1[z]) size=26 lw = 2.5 #print np.log10(meanxfrac[:,5]) f, (ax1, ax2) = plt.subplots(2, figsize=(14,14),sharex=True) #ax1.set_xlim(redshifts2[0],redshifts2[len(redshifts2)-1]) ax1.plot(redshifts2[0:length],np.log10(meanxfrac[:,0]),color="Red",label="HII",linewidth=lw) ax1.plot(redshifts2[0:length],np.log10(meanxfrac[:,1]),color="Red",label="HeII",linewidth=lw,linestyle='--') ax1.plot(redshifts2[0:length],np.log10(meanxfrac[:,2]),color="Red",label="HeIII",linewidth=lw,linestyle=':') ax1.plot(redshifts1[0:length],np.log10(meanxfrac[:,3]),color="Blue",label="HII",linewidth=lw) ax1.plot(redshifts1[0:length],np.log10(meanxfrac[:,4]),color="Blue",label="HeII",linewidth=lw,linestyle='--') ax1.plot(redshifts1[0:length],np.log10(meanxfrac[:,5]),color="Blue",label="HeIII",linewidth=lw,linestyle=':') ax1.set_ylabel(r'Ionised Fraction',size=size) ax1.set_ylim(-13.5,0) ax2.set_ylim(0,800) ax2.plot(redshifts1,Tcmb,label='$T_{cmb}$',color='black',linestyle='--',linewidth=lw) ax2.plot(redshifts1[0:length],meantemp[:,0],color='Blue',label=label1,linewidth=lw) ax2.plot(redshifts2[0:length],meantemp[:,1],color='Red',label=label2,linewidth=lw) ax2.set_ylabel("Temperature [K]",size=size) ax2.set_xlabel("Redshifts",size=size) #ax2.set_ylim(-250,80) ax1.tick_params(axis='both', which='major', labelsize=numberfontsize, width = tickwidth, length = 11, direction='in',pad=14.0,top='off',right='off') ax1.tick_params(axis='both', which='minor', labelsize=numberfontsize, width = tickwidth, length = 5.5, direction='in',pad=14.0,top='off',right='off') ax2.tick_params(axis='both', which='major', width = tickwidth, length = 11,direction='in',top='off',right='off') ax2.tick_params(axis='both', which='minor', width = tickwidth, length = 5.5,direction='in',top='off',right='off') # lg1 = ax1.legend(bbox_to_anchor=(0.04, 0.65), loc=2, borderaxespad=0.,prop={'size':size}) # lg1.draw_frame(False) lg = ax2.legend(bbox_to_anchor=(0.04, 0.8), loc=2, borderaxespad=0.,prop={'size':size}) lg.draw_frame(False) plt.gcf().subplots_adjust(left=0.2,bottom=0.15) #plt.tight_layout() f.subplots_adjust(hspace=0) # fig = plt.figure(figsize=(12,10)) # ax = fig.add_subplot(111) # ax.plot(redshifts2,meantemp[:,0],color='Blue',label=label1,linewidth=lw) # ax.plot(redshifts2,meantemp[:,1],color='Red',label=label2,linewidth=lw) # ax.plot(redshifts1,Tcmb,label='$T_{cmb}$',color='black',linestyle='--',linewidth=lw) # ax.set_ylabel("Temperature [K]",fontsize=size) # ax.set_xlabel("Redshift",fontsize=size) # ax.xaxis.set_tick_params(labelsize=size) # ax.yaxis.set_tick_params(labelsize=size) #lg = plt.legend(bbox_to_anchor=(0.55, 0.97), loc=2,prop={'size':size-1}) #lg.draw_frame(False) plt.xlim(redshifts2[0],redshifts1[len(redshifts1)-1]) # ax.text(22.7,1100,"(b)",fontsize=size) # # rect = [0.15,0.2,0.55,0.55] # ax1 = add_subplot_axes(ax,rect) # ax1.set_ylabel("log$_{10}$(xfrac)",fontsize=size-2) ## ax1.set_xlabel("z",fontsize=size-2) # ax1.xaxis.set_tick_params(labelsize=size-2) # ax1.yaxis.set_tick_params(labelsize=size-2) # ax1.plot(redshifts2,np.log10(meanxfrac[:,0]),color="Red",label="HII",linewidth=lw) # ax1.plot(redshifts2,np.log10(meanxfrac[:,1]),color="Red",label="HeII",linewidth=lw,linestyle='--') # ax1.plot(redshifts2,np.log10(meanxfrac[:,2]),color="Red",label="HeIII",linewidth=lw,linestyle=':') # ax1.plot(redshifts2,np.log10(meanxfrac[:,3]),color="Blue",label="HII",linewidth=lw) # ax1.plot(redshifts2,np.log10(meanxfrac[:,4]),color="Blue",label="HeII",linewidth=lw,linestyle='--') # ax1.plot(redshifts2,np.log10(meanxfrac[:,5]),color="Blue",label="HeIII",linewidth=lw,linestyle=':') ax1.text(22,-2,"(a)",fontsize=size-2) ax2.text(22,700,"(b)",fontsize=size-2) # lg =plt.legend(loc=4,ncol=2,prop={'size':size-3}) # lg.draw_frame(False) # plt.ylim(-16,0) # plt.xlim(redshifts2[0],redshifts2[len(redshifts2)-1]) print "saving as paperplots/plot1.png" #plt.tight_layout() plt.savefig("paperplots/plot1.png")
plot_2D.plottemp() plot_2D.plotxfrac('') plot_2D.plotxfrac('He1') plot_2D.plotxfrac('He2') plot_2D.equation_of_state() ##these need information from generate_data so leave until last plot_2D.plotdbt() plot_2D.plot_smoothed_dbt() # plot_2D.lightcone_temp() plot_2D.lightcone_xfrac() plot_2D.lightcone_xfrac(rsd='rsd') plot_2D.lightcone_temp('rsd') # plot_1D.plot_mean(plot_1D.mean("temp"),"Tempererature","Temperature (K)") means = np.zeros(len(redshifts)*3).reshape(len(redshifts),3) means[:,0] = plot_1D.mean('xfrac') means[:,1] = plot_1D.mean('xfracHe1') means[:,2] = plot_1D.mean('xfracHe2') plot_1D.plot_mean(np.log10(means),"x-frac","Log (Ionised Fraction)") ## meantemp=plot_1D.mean('temp') plot_1D.plot_mean(meantemp,"Temper","Temperature (K)") #meantemp_igm=plot_1D.mean('temp_igm') #plot_1D.plot_mean(meantemp_igm,"igm_temper","Temperature (K)") ###CMBtemp=2.725*(np.ones(len(redshifts))+redshifts) ###meantest=(meantemp-CMBtemp)/meantemp