def generate_multiplot(self, values: Dict[str, Any] = None): # TOCHECK Avoid circular imports import plot_data from plot_data.colors import BLACK, LIGHTBLUE, LIGHTGREY, BLUE if values is None: values = [] for i, line in enumerate(self.array): value = {} for variable in self.variables: value[variable] = self.get_value_by_name(line, variable) # for objective_name, ratings in objective_ratings.items(): # value[objective_name] = ratings[i] values.append(value) fontsize = 12 first_vars = self.variables[:2] values2d = [{key: val[key]} for key in first_vars for val in values] rgbs = [[192, 11, 11], [14, 192, 11], [11, 11, 192]] tooltip = plot_data.Tooltip(to_disp_attribute_names=self.variables, name='Tooltip') scatterplot = plot_data.Scatter(axis=plot_data.Axis(), tooltip=tooltip, to_disp_attribute_names=first_vars, elements=values2d, name='Scatter Plot') parallelplot = plot_data.ParallelPlot( disposition='horizontal', to_disp_attribute_names=self.variables, rgbs=rgbs, elements=values) objects = [scatterplot, parallelplot] sizes = [ plot_data.Window(width=560, height=300), plot_data.Window(width=560, height=300) ] coords = [(0, 0), (0, 300)] multiplot = plot_data.MultiplePlots(plots=objects, elements=values, sizes=sizes, coords=coords, name='Results plot') return multiplot
plot_data.LineSegment2D([2, 2], [2, 1]), plot_data.LineSegment2D([2, 1], [1, 1])], surface_style=plot_data.SurfaceStyle(colors.LIGHTORANGE)) circle1 = plot_data.Circle2D(cx=0, cy=0, r=10) circle2 = plot_data.Circle2D(cx=1, cy=1, r=5, surface_style=plot_data.SurfaceStyle(colors.RED)) circle3 = plot_data.Circle2D(cx=1, cy=1, r=5, surface_style=plot_data.SurfaceStyle(colors.LIGHTBROWN)) primitive_group1 = [circle1] primitive_group2 = [contour] primitive_group3 = [circle2] primitive_group4 = [circle3] primitive_groups = [primitive_group1, primitive_group2, primitive_group3, primitive_group4] primitive_group_container = plot_data.PrimitiveGroupsContainer(primitive_groups=primitive_groups, associated_elements=[1, 2, 3, 4], x_variable='x', y_variable='y') histogram = plot_data.Histogram(x_variable='x') """Creating the multiplot""" plots = [parallelplot1, parallelplot2, scatterplot1, scatterplot2, scatterplot3, graph2d, primitive_group_container, histogram] multiplot = plot_data.MultiplePlots(plots=plots, elements=elements, initial_view_on=True) # Display plot_data.plot_canvas(plot_data_object=multiplot, debug_mode=True)
# This script shows how to instantiate a MultiplePlots from a csv file import plot_data # ParallelPlot axes = ['price_wather', 'length_wather', 'price_air'] parallel_plot = plot_data.ParallelPlot(axes=axes) # Scatter scatter_plot = plot_data.Scatter(x_variable='price_wather', y_variable='length_wather') catalog = plot_data.get_csv_vectors('../plot_data/data/data.csv') points = [{var: catalog.get_value_by_name(line, var) for var in axes} for line in catalog.array] plots = [parallel_plot, scatter_plot] multipleplots = plot_data.MultiplePlots(elements=points, plots=plots, initial_view_on=True) # If debug_mode == True, set it to False plot_data.plot_canvas(plot_data_object=multipleplots, debug_mode=True)
def plot_data(self): cycle_time = [ i + 1 for i in range(len(self.wltp_cycle.cycle_speeds[:-1])) ] points = [] for car_speed, wheel_torque, engine_speed, engine_torque, fuel_consumption, time, gear in zip( self.wltp_cycle.cycle_speeds[:-1], self.wltp_cycle.cycle_torques, self.engine_speeds, self.engine_torques, self.fuel_consumptions, cycle_time, self.gears_ratios[0]): points.append({ 'c_s': car_speed, 'whl_t': wheel_torque, 'w_e': engine_speed, 't_e': engine_torque, 'f_cons (g/kWh)': fuel_consumption * 3.6e9, 'time': time, 'gear': gear }) color_fill = LIGHTBLUE color_stroke = GREY point_style = plot_data.PointStyle(color_fill=color_fill, color_stroke=color_stroke) axis = plot_data.Axis() attributes = ['c_s', 'f_cons (g/kWh)'] tooltip = plot_data.Tooltip(attributes=attributes) objects = [ plot_data.Scatter(tooltip=tooltip, x_variable=attributes[0], y_variable=attributes[1], point_style=point_style, elements=points, axis=axis) ] attributes = ['whl_t', 'f_cons (g/kWh)'] tooltip = plot_data.Tooltip(attributes=attributes) objects.append( plot_data.Scatter(tooltip=tooltip, x_variable=attributes[0], y_variable=attributes[1], point_style=point_style, elements=points, axis=axis)) attributes = ['w_e', 't_e', 'f_cons (g/kWh)'] edge_style = plot_data.EdgeStyle() rgbs = [[192, 11, 11], [14, 192, 11], [11, 11, 192]] objects.append( plot_data.ParallelPlot(elements=points, edge_style=edge_style, disposition='vertical', axes=attributes, rgbs=rgbs)) coords = [(0, 0), (500, 0), (1000, 0)] sizes = [ plot_data.Window(width=500, height=500), plot_data.Window(width=500, height=500), plot_data.Window(width=500, height=500) ] multiplot = plot_data.MultiplePlots(elements=points, plots=objects, sizes=sizes, coords=coords) list_colors = [BLUE, BROWN, GREEN, BLACK] graphs2d = [] point_style = plot_data.PointStyle(color_fill=RED, color_stroke=BLACK, size=1) tooltip = plot_data.Tooltip(attributes=['sec', 'gear']) edge_style = plot_data.EdgeStyle(line_width=0.5, color_stroke=list_colors[0]) elements = [] for i, gear in enumerate(self.gears_ratios[0]): elements.append({'sec': cycle_time[i], 'gear': gear}) dataset = plot_data.Dataset(elements=elements, edge_style=edge_style, tooltip=tooltip, point_style=point_style) graphs2d.append( plot_data.Graph2D(graphs=[dataset], x_variable='sec', y_variable='gear')) tooltip = plot_data.Tooltip(attributes=['sec', 'f_cons (g/kWh)']) edge_style = plot_data.EdgeStyle(line_width=0.5, color_stroke=list_colors[0]) elements = [] for i, gear in enumerate(self.gears_ratios[0]): point = { 'sec': cycle_time[i], 'f_cons (g/kWh)': self.fuel_consumptions[i] * 3.6e9 } elements.append(point) dataset = plot_data.Dataset(elements=elements, edge_style=edge_style, tooltip=tooltip, point_style=point_style) graphs2d.append( plot_data.Graph2D(graphs=[dataset], x_variable='sec', y_variable='f_cons (g/kWh)')) tooltip = plot_data.Tooltip(attributes=['sec', 'w_e']) edge_style = plot_data.EdgeStyle(line_width=0.5, color_stroke=list_colors[2]) elements = [] for i, torque in enumerate(self.wltp_cycle.cycle_torques): elements.append({ 'sec': cycle_time[i], 'w_e': self.engine_speeds[i] }) dataset = plot_data.Dataset(elements=elements, edge_style=edge_style, tooltip=tooltip, point_style=point_style) graphs2d.append( plot_data.Graph2D(graphs=[dataset], x_variable='sec', y_variable='w_e')) tooltip = plot_data.Tooltip(attributes=['sec', 'w_t']) edge_style = plot_data.EdgeStyle(line_width=0.5, color_stroke=list_colors[3]) elements = [] for i, torque in enumerate(self.wltp_cycle.cycle_torques): elements.append({ 'sec': cycle_time[i], 'w_t': self.engine_torques[i] }) dataset = plot_data.Dataset(elements=elements, edge_style=edge_style, tooltip=tooltip, point_style=point_style) graphs2d.append( plot_data.Graph2D(graphs=[dataset], x_variable='sec', y_variable='w_t')) coords = [(0, 0), (0, 187.5), (0, 375), (0, 562.5)] sizes = [ plot_data.Window(width=1500, height=187.5), plot_data.Window(width=1500, height=187.5), plot_data.Window(width=1500, height=187.5), plot_data.Window(width=1500, height=187.5) ] multiplot2 = plot_data.MultiplePlots(elements=points, plots=graphs2d, sizes=sizes, coords=coords) return [multiplot, multiplot2]
def plot_data(self): attributes = ['cx', 'cy'] # Contour contour = self.standalone_subobject.contour().plot_data() primitives_group = plot_data.PrimitiveGroup(primitives=[contour], name='Contour') # Scatter Plot bounds = {'x': [0, 6], 'y': [100, 2000]} catalog = Catalog.random_2d(bounds=bounds, threshold=8000) points = [ plot_data.Point2D(cx=v[0], cy=v[1], name='Point' + str(i)) for i, v in enumerate(catalog.array) ] axis = plot_data.Axis() tooltip = plot_data.Tooltip(to_disp_attribute_names=attributes, name='Tooltips') scatter_plot = plot_data.Scatter(axis=axis, tooltip=tooltip, elements=points, to_disp_attribute_names=attributes, name='Scatter Plot') # Parallel Plot attributes = ['cx', 'cy', 'color_fill', 'color_stroke'] parallel_plot = plot_data.ParallelPlot( elements=points, to_disp_attribute_names=attributes, name='Parallel Plot') # Multi Plot objects = [scatter_plot, parallel_plot] sizes = [ plot_data.Window(width=560, height=300), plot_data.Window(width=560, height=300) ] coords = [(0, 0), (300, 0)] multi_plot = plot_data.MultiplePlots(elements=points, plots=objects, sizes=sizes, coords=coords, name='Multiple Plot') attribute_names = ['time', 'electric current'] tooltip = plot_data.Tooltip(to_disp_attribute_names=attribute_names) time1 = linspace(0, 20, 20) current1 = [t**2 for t in time1] elements1 = [] for time, current in zip(time1, current1): elements1.append({'time': time, 'electric current': current}) # The previous line instantiates a dataset with limited arguments but # several customizations are available point_style = plot_data.PointStyle(color_fill=RED, color_stroke=BLACK) edge_style = plot_data.EdgeStyle(color_stroke=BLUE, dashline=[10, 5]) custom_dataset = plot_data.Dataset(elements=elements1, name='I = f(t)', tooltip=tooltip, point_style=point_style, edge_style=edge_style) # Now let's create another dataset for the purpose of this exercice time2 = linspace(0, 20, 100) current2 = [100 * (1 + cos(t)) for t in time2] elements2 = [] for time, current in zip(time2, current2): elements2.append({'time': time, 'electric current': current}) dataset2 = plot_data.Dataset(elements=elements2, name='I2 = f(t)') graph2d = plot_data.Graph2D(graphs=[custom_dataset, dataset2], to_disp_attribute_names=attribute_names) return [ primitives_group, scatter_plot, parallel_plot, multi_plot, graph2d ]
def plot_clusters(self): colors = [ RED, GREEN, ORANGE, BLUE, LIGHTSKYBLUE, ROSE, VIOLET, LIGHTRED, LIGHTGREEN, CYAN, BROWN, GREY, HINT_OF_MINT, GRAVEL ] all_points = [] for i, point in enumerate(self.matrix_mds): point = { 'x': point[0], 'y': point[1], 'Aver path': self.gearboxes_ordered[i].average_path_length, 'Aver L clutch-input': self.gearboxes_ordered[i].average_clutch_distance, 'ave_l_ns': self.gearboxes_ordered[i].ave_l_ns, 'Number shafts': self.gearboxes_ordered[i].number_shafts, 'Std input_cluches': self.gearboxes_ordered[i].std_clutch_distance, 'Density': self.gearboxes_ordered[i].density, 'Cluster': self.labels_reordered[i] } all_points.append(point) point_families = [] for i, indexes in enumerate(self.list_indexes_groups): color = colors[i] point_family = plot_data.PointFamily(point_color=color, point_index=indexes, name='Cluster ' + str(self.clusters[i])) point_families.append(point_family) all_attributes = [ 'x', 'y', 'Aver path', 'Aver L clutch-input', 'ave_l_ns', 'Number shafts', 'Number gears', 'Std input/cluches', 'Density' ] pp_attributes = [ 'Aver path', 'Number shafts', 'ave_l_ns', 'Aver L clutch-input', 'Std input/cluches', 'Number gears', 'Density', 'Cluster' ] tooltip = plot_data.Tooltip(attributes=all_attributes) edge_style = plot_data.EdgeStyle(color_stroke=BLACK, dashline=[10, 5]) plots = [ plot_data.Scatter(tooltip=tooltip, x_variable='x', y_variable='y', elements=all_points) ] rgbs = [[192, 11, 11], [14, 192, 11], [11, 11, 192]] plots.append( plot_data.ParallelPlot(elements=all_points, edge_style=edge_style, disposition='vertical', axes=pp_attributes, rgbs=rgbs)) sizes = [ plot_data.Window(width=560, height=300), plot_data.Window(width=560, height=300) ] coords = [(0, 0), (0, 300)] clusters = plot_data.MultiplePlots(plots=plots, coords=coords, sizes=sizes, elements=all_points, point_families=point_families, initial_view_on=True) return clusters