def execute(): (train_data, train_labels), (test_data, test_labels) = tf.keras.datasets.reuters.load_data( num_words=10000) x_train = vectorize_sequences(train_data) x_test = vectorize_sequences(test_data) one_hot_train_labels = tf.keras.utils.to_categorical(train_labels) one_hot_test_labels = tf.keras.utils.to_categorical(test_labels) x_val = x_train[:1000] partial_x_train = x_train[1000:] y_val = one_hot_train_labels[:1000] partial_y_train = one_hot_train_labels[1000:] model = tf.keras.models.Sequential([ tf.keras.layers.Dense(64, activation='relu'), tf.keras.layers.Dense(64, activation='relu'), tf.keras.layers.Dense(46, activation='softmax') ]) model.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy']) history = model.fit(partial_x_train, partial_y_train, epochs=20, batch_size=512, validation_data=(x_val, y_val)) show_loss(history) show_accuracy(history)
def execute(): (train_data, train_labels), (test_data, test_labels) = tf.keras.datasets.imdb.load_data( num_words=10000) y_train = np.asarray(train_labels).astype('float32') y_test = np.asarray(test_labels).astype('float32') x_train = vectorize_sequences(train_data) x_test = vectorize_sequences(test_data) x_val = x_train[:10000] partial_x_train = x_train[10000:] y_val = y_train[:10000] partial_y_train = y_train[10000:] model = tf.keras.models.Sequential([ tf.keras.layers.Dense(16, activation='relu'), tf.keras.layers.Dense(16, activation='relu'), tf.keras.layers.Dense(1, activation='sigmoid') ]) model.compile(optimizer='rmsprop', loss='binary_crossentropy', metrics=['accuracy']) history = model.fit(partial_x_train, partial_y_train, epochs=20, batch_size=512, validation_data=(x_val, y_val)) show_loss(history) show_accuracy(history)
def execute(): train_data = load_npy_file(npy_files_dir_path + 'train_z_data.npy') valid_data = load_npy_file(npy_files_dir_path + 'valid_z_data.npy') test_data = load_npy_file(npy_files_dir_path + 'test_z_data.npy') train_labels = load_npy_file(npy_files_dir_path + 'train_labels.npy') valid_labels = load_npy_file(npy_files_dir_path + 'valid_labels.npy') test_labels = load_npy_file(npy_files_dir_path + 'test_labels.npy') one_hot_train_labels = tf.keras.utils.to_categorical(train_labels) one_hot_valid_labels = tf.keras.utils.to_categorical(valid_labels) one_hot_test_labels = tf.keras.utils.to_categorical(test_labels) model = tf.keras.models.Sequential([ tf.keras.layers.Dense(512, activation='relu'), tf.keras.layers.Dense(512, activation='relu'), tf.keras.layers.Dense(3, activation='softmax') ]) model.compile( optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy'] ) history = model.fit( train_data, one_hot_train_labels, epochs=20, batch_size=512, validation_data=(valid_data, one_hot_valid_labels) ) create_dir_if_necessary(model_saving_dir_path) model.save(model_saving_dir_path + 'model_Z.h5') loss, acc = model.evaluate(test_data, one_hot_test_labels) print_loss_acc(loss, acc) show_loss(history) show_accuracy(history)