Example #1
0
def make_eff_pt2():

    #efficiency vs. pT^2

    ptbin = 0.005
    ptmin = 0.
    ptmax = 0.12  # 0.3

    mmin = 2.8
    mmax = 3.2

    strsel = "jRecM>{0:.3f} && jRecM<{1:.3f}".format(mmin, mmax)

    can = ut.box_canvas()

    nbins, ptmax = ut.get_nbins(ptbin, ptmin, ptmax)
    hPtRec = TH1D("hPtRec", "hPtRec", nbins, ptmin, ptmax)
    hPtGen = TH1D("hPtGen", "hPtGen", nbins, ptmin, ptmax)
    #hPtRec = ut.prepare_TH1D("hPtRec", ptbin, ptmin, ptmax)
    #hPtGen = ut.prepare_TH1D("hPtGen", ptbin, ptmin, ptmax)

    hPtRec.Sumw2()
    hPtGen.Sumw2()

    ut.set_margin_lbtr(gPad, 0.11, 0.09, 0.01, 0.02)

    #generated trees
    tree_coh_gen = inp_coh.Get("jGenTree")
    tree_incoh_gen = inp_incoh.Get("jGenTree")

    tree_coh.Draw("jGenPt*jGenPt >> hPtRec", strsel)
    tree_coh_gen.Draw("jGenPt*jGenPt >> hPtGen")

    #tree_incoh.Draw("jGenPt*jGenPt >>+ hPtRec", strsel)
    #tree_incoh_gen.Draw("jGenPt*jGenPt >>+ hPtGen")

    #tree_incoh.Draw("jGenPt*jGenPt >> hPtRec", strsel)
    #tree_incoh_gen.Draw("jGenPt*jGenPt >> hPtGen")

    #calculate the efficiency
    hEff = TGraphAsymmErrors(hPtRec, hPtGen)

    #hPtRec.Divide(hPtGen)

    #hPtRec.Draw()
    #hPtGen.Draw("same")
    hEff.Draw()

    ut.invert_col(rt.gPad)
    can.SaveAs("01fig.pdf")
Example #2
0
def make_fit():

    adc_bin = 12  #18 for low-m gg, 24 for jpsi
    adc_min = 0.  #10.
    adc_max = 400.
    #adc_max = 1200

    ptmax = 0.18
    #mmin = 1.6
    #mmin = 2.1
    #mmax = 2.6
    #mmin = 1.5
    #mmax = 5.
    mmin = 2.9
    mmax = 3.2
    #mmin = 3.4
    #mmax = 4.6

    #east/west projections and 2D plot
    ew = 1
    p2d = 2  #  0: single projection by 'ew',  1: 2D plot,  2: both projections

    #plot colors
    model_col = rt.kMagenta
    model_col = rt.kBlue

    out = open("out.txt", "w")
    lmg = 6
    ut.log_results(out, "in " + infile, lmg)
    strlog = "adc_bin " + str(adc_bin) + " adc_min " + str(
        adc_min) + " adc_max " + str(adc_max)
    strlog += " ptmax " + str(ptmax) + " mmin " + str(mmin) + " mmax " + str(
        mmax)
    ut.log_results(out, strlog, lmg)

    #adc distributions
    adc_east = RooRealVar("jZDCUnAttEast", "ZDC ADC east", adc_min, adc_max)
    adc_west = RooRealVar("jZDCUnAttWest", "ZDC ADC west", adc_min, adc_max)
    #kinematics variables
    m = RooRealVar("jRecM", "e^{+}e^{-} mass (GeV)", 0., 10.)
    y = RooRealVar("jRecY", "rapidity", -1., 1.)
    pT = RooRealVar("jRecPt", "pT", 0., 10.)

    #adc distributions
    #adc_east = RooRealVar("zdce", "ZDC ADC east", adc_min, adc_max)
    #adc_west = RooRealVar("zdcw", "ZDC ADC west", adc_min, adc_max)
    #kinematics variables
    #m = RooRealVar("mee", "e^{+}e^{-} mass (GeV)", 0., 10.)
    #y = RooRealVar("rapee", "rapidity", -1., 1.)
    #pT = RooRealVar("ptpair", "pT", 0., 10.)

    strsel = "jRecPt<{0:.3f} && jRecM>{1:.3f} && jRecM<{2:.3f}".format(
        ptmax, mmin, mmax)
    #strsel = "ptpair<{0:.3f} && mee>{1:.3f} && mee<{2:.3f}".format(ptmax, mmin, mmax)
    data_all = RooDataSet("data", "data", tree,
                          RooArgSet(adc_east, adc_west, m, y, pT))
    print "All input:", data_all.numEntries()
    data = data_all.reduce(strsel)
    print "Sel input:", data.numEntries()

    model = Model2D(adc_east, adc_west)

    r1 = model.model.fitTo(data, rf.Save())

    ut.log_results(out, ut.log_fit_result(r1), lmg)
    ut.log_results(out, "Fit parameters:\n", lmg)
    out.write(ut.log_fit_parameters(r1, lmg + 2) + "\n")
    #out.write(ut.table_fit_parameters(r1))

    #print ut.table_fit_parameters(r1)

    #create the plot
    if p2d != 2: can = ut.box_canvas()

    nbins, adc_max = ut.get_nbins(adc_bin, adc_min, adc_max)
    adc_east.setMax(adc_max)
    adc_west.setMax(adc_max)
    frame_east = adc_east.frame(rf.Bins(nbins), rf.Title(""))
    frame_west = adc_west.frame(rf.Bins(nbins), rf.Title(""))

    data.plotOn(frame_east, rf.Name("data"))
    model.model.plotOn(frame_east, rf.Precision(1e-6), rf.Name("model"),
                       rf.LineColor(model_col))

    data.plotOn(frame_west, rf.Name("data"))
    model.model.plotOn(frame_west, rf.Precision(1e-6), rf.Name("model"),
                       rf.LineColor(model_col))

    #reduced chi^2 in east and west projections
    ut.log_results(out, "chi2/ndf:\n", lmg)
    ut.log_results(
        out,
        "  East chi2/ndf: " + str(frame_east.chiSquare("model", "data", 16)),
        lmg)
    ut.log_results(
        out,
        "  West chi2/ndf: " + str(frame_west.chiSquare("model", "data", 16)),
        lmg)
    ut.log_results(out, "", 0)

    ytit = "Events / ({0:.0f} ADC units)".format(adc_bin)
    frame_east.SetYTitle(ytit)
    frame_west.SetYTitle(ytit)
    frame_east.SetTitle("")
    frame_west.SetTitle("")

    frame = [frame_east, frame_west]
    if p2d == 0: plot_projection(frame[ew], ew)

    plot_pdf = PlotPdf(model, adc_east, adc_west)
    if p2d == 1: plot_2d(plot_pdf)

    if p2d == 2:
        frame2 = ut.prepare_TH1D("frame2", adc_bin, adc_min,
                                 2. * adc_max + 4.1 * adc_bin)
        plot_proj_both(frame2, frame_east, frame_west, adc_bin, adc_min,
                       adc_max, ptmax, mmin, mmax)

    lhead = ["east ZDC", "west ZDC"]
    if p2d == 1:
        leg = ut.prepare_leg(0.003, 0.9, 0.3, 0.1, 0.035)
    else:
        leg = ut.prepare_leg(0.66, 0.8, 0.32, 0.13, 0.03)
    if p2d == 0: leg.AddEntry(None, "#bf{Projection to " + lhead[ew] + "}", "")
    leg.SetMargin(0.05)
    leg.AddEntry(None,
                 "#bf{#it{p}_{T} < " + "{0:.2f}".format(ptmax) + " GeV/c}", "")
    mmin_fmt = "{0:.1f}".format(mmin)
    mmax_fmt = "{0:.1f}".format(mmax)
    leg.AddEntry(
        None, "#bf{" + mmin_fmt + " < #it{m}_{e^{+}e^{-}} < " + mmax_fmt +
        " GeV/c^{2}}", "")
    leg.Draw("same")

    pleg = ut.prepare_leg(0.99, 0.87, -0.4, 0.11, 0.035)
    pleg.SetFillStyle(1001)
    #pleg.AddEntry(None, "STAR Preliminary", "")
    pleg.AddEntry(None, "AuAu@200 GeV", "")
    pleg.AddEntry(None, "UPC sample", "")
    #pleg.Draw("same")

    #ut.print_pad(gPad)

    #b3d = TBuffer3D(0)
    #b3d = None
    #gPad.GetViewer3D().OpenComposite(b3d)
    #print b3d

    #print "All input: ", data.numEntries()
    #print "All input: 858"
    #all input data
    nall = float(tree.Draw("", strsel))
    print "All input: ", nall
    n_1n1n = float(model.num_1n1n.getVal())
    print "1n1n events: ", n_1n1n
    ratio_1n1n = n_1n1n / nall
    sigma_ratio_1n1n = ratio_1n1n * TMath.Sqrt(
        (nall - n_1n1n) / (nall * n_1n1n))
    print "Ratio 1n1n / all: ", ratio_1n1n, "+/-", sigma_ratio_1n1n
    ut.log_results(out, "Fraction of 1n1n events:\n", lmg)
    ut.log_results(out, "All input: " + str(nall), lmg)
    ut.log_results(out, "1n1n events: " + str(model.num_1n1n.getVal()), lmg)
    ratio_str = "Ratio 1n1n / all: " + str(ratio_1n1n) + " +/- " + str(
        sigma_ratio_1n1n)
    ut.log_results(out, ratio_str, lmg)

    if p2d != 2:
        #ut.print_pad(gPad)
        ut.invert_col(gPad)
        can.SaveAs("01fig.pdf")

    if interactive == True: start_interactive()
Example #3
0
def pdf_logPt2_prelim():

    #PDF fit to log_10(pT^2) for preliminary figure

    #tree_in = tree_incoh
    tree_in = tree

    #ptbin = 0.04
    ptbin = 0.12
    ptmin = -5.
    ptmax = 1.

    mmin = 2.8
    mmax = 3.2

    #fitran = [-5., 1.]
    fitran = [-0.9, 0.1]

    binned = False

    #gamma-gamma 131 evt for pT<0.18

    #input data
    pT = RooRealVar("jRecPt", "pT", 0, 10)
    m = RooRealVar("jRecM", "mass", 0, 10)
    dataIN = RooDataSet("data", "data", tree_in, RooArgSet(pT, m))
    strsel = "jRecM>{0:.3f} && jRecM<{1:.3f}".format(mmin, mmax)
    data = dataIN.reduce(strsel)
    #x is RooRealVar for log(Pt2)
    draw = "TMath::Log10(jRecPt*jRecPt)"
    draw_func = RooFormulaVar(
        "x", "Dielectron log_{10}( #it{p}_{T}^{2} ) ((GeV/c)^{2})", draw,
        RooArgList(pT))
    x = data.addColumn(draw_func)
    x.setRange("fitran", fitran[0], fitran[1])

    #binned data
    nbins, ptmax = ut.get_nbins(ptbin, ptmin, ptmax)
    hPt = TH1D("hPt", "hPt", nbins, ptmin, ptmax)
    hPtCoh = ut.prepare_TH1D("hPtCoh", ptbin, ptmin, ptmax)
    hPtCoh.SetLineWidth(2)
    #fill in binned data
    tree_in.Draw(draw + " >> hPt", strsel)
    tree_coh.Draw(draw + " >> hPtCoh", strsel)
    dataH = RooDataHist("dataH", "dataH", RooArgList(x), hPt)

    #range for plot
    x.setMin(ptmin)
    x.setMax(ptmax)
    x.setRange("plotran", ptmin, ptmax)

    #create the pdf
    b = RooRealVar("b", "b", 5., 0., 10.)
    pdf_func = "log(10.)*pow(10.,x)*exp(-b*pow(10.,x))"
    pdf_logPt2 = RooGenericPdf("pdf_logPt2", pdf_func, RooArgList(x, b))

    #make the fit
    if binned == True:
        r1 = pdf_logPt2.fitTo(dataH, rf.Range("fitran"), rf.Save())
    else:
        r1 = pdf_logPt2.fitTo(data, rf.Range("fitran"), rf.Save())

    #calculate norm to number of events
    xset = RooArgSet(x)
    ipdf = pdf_logPt2.createIntegral(xset, rf.NormSet(xset),
                                     rf.Range("fitran"))
    print "PDF integral:", ipdf.getVal()
    if binned == True:
        nevt = tree_incoh.Draw(
            "", strsel + " && " + draw + ">{0:.3f}".format(fitran[0]) +
            " && " + draw + "<{1:.3f}".format(fitran[0], fitran[1]))
    else:
        nevt = data.sumEntries("x", "fitran")

    print "nevt:", nevt
    pdf_logPt2.setNormRange("fitran")
    print "PDF norm:", pdf_logPt2.getNorm(RooArgSet(x))

    #a = nevt/ipdf.getVal()
    a = nevt / pdf_logPt2.getNorm(RooArgSet(x))
    print "a =", a

    #gamma-gamma contribution
    hPtGG = ut.prepare_TH1D("hPtGG", ptbin, ptmin, ptmax)
    tree_gg.Draw(draw + " >> hPtGG", strsel)
    #ut.norm_to_data(hPtGG, hPt, rt.kGreen, -5., -2.9)
    ut.norm_to_num(hPtGG, 131., rt.kGreen + 1)

    print "Int GG:", hPtGG.Integral()

    #sum of all contributions
    hSum = ut.prepare_TH1D("hSum", ptbin, ptmin, ptmax)
    hSum.SetLineWidth(3)
    #add ggel to the sum
    hSum.Add(hPtGG)
    #add incoherent contribution
    func_logPt2 = TF1("pdf_logPt2",
                      "[0]*log(10.)*pow(10.,x)*exp(-[1]*pow(10.,x))", -10.,
                      10.)
    func_logPt2.SetParameters(a, b.getVal())
    hInc = ut.prepare_TH1D("hInc", ptbin, ptmin, ptmax)
    ut.fill_h1_tf(hInc, func_logPt2)
    hSum.Add(hInc)
    #add coherent contribution
    ut.norm_to_data(hPtCoh, hPt, rt.kBlue, -5., -2.2)  # norm for coh
    hSum.Add(hPtCoh)
    #set to draw as a lines
    ut.line_h1(hSum, rt.kBlack)

    #create canvas frame
    can = ut.box_canvas()
    ut.set_margin_lbtr(gPad, 0.11, 0.1, 0.01, 0.01)

    frame = x.frame(rf.Bins(nbins), rf.Title(""))
    frame.SetTitle("")

    frame.SetYTitle("J/#psi candidates / ({0:.3f}".format(ptbin) +
                    " (GeV/c)^{2})")

    frame.GetXaxis().SetTitleOffset(1.2)
    frame.GetYaxis().SetTitleOffset(1.6)

    print "Int data:", hPt.Integral()

    #plot the data
    if binned == True:
        dataH.plotOn(frame, rf.Name("data"))
    else:
        data.plotOn(frame, rf.Name("data"))

    pdf_logPt2.plotOn(frame, rf.Range("fitran"), rf.LineColor(rt.kRed),
                      rf.Name("pdf_logPt2"))
    pdf_logPt2.plotOn(frame, rf.Range("plotran"), rf.LineColor(rt.kRed),
                      rf.Name("pdf_logPt2_full"), rf.LineStyle(rt.kDashed))

    frame.Draw()

    leg = ut.prepare_leg(0.61, 0.77, 0.16, 0.19, 0.03)
    #ut.add_leg_mass(leg, mmin, mmax)
    hx = ut.prepare_TH1D("hx", 1, 0, 1)
    hx.Draw("same")
    ln = ut.col_lin(rt.kRed, 2)
    leg.AddEntry(hx, "Data", "p")
    leg.AddEntry(hSum, "Sum", "l")
    leg.AddEntry(hPtCoh, "Coherent J/#psi", "l")
    leg.AddEntry(ln, "Incoherent parametrization", "l")
    leg.AddEntry(hPtGG, "#gamma#gamma#rightarrow e^{+}e^{-}", "l")
    #leg.AddEntry(ln, "ln(10)*#it{A}*10^{log_{10}#it{p}_{T}^{2}}exp(-#it{b}10^{log_{10}#it{p}_{T}^{2}})", "l")
    leg.Draw("same")

    l0 = ut.cut_line(fitran[0], 0.9, frame)
    l1 = ut.cut_line(fitran[1], 0.9, frame)
    #l0.Draw()
    #l1.Draw()

    pleg = ut.prepare_leg(0.12, 0.75, 0.14, 0.22, 0.03)
    pleg.AddEntry(None, "#bf{|#kern[0.3]{#it{y}}| < 1}", "")
    ut.add_leg_mass(pleg, mmin, mmax)
    pleg.AddEntry(None, "STAR Preliminary", "")
    pleg.AddEntry(None, "AuAu@200 GeV", "")
    pleg.AddEntry(None, "UPC sample", "")
    pleg.Draw("same")

    desc = pdesc(frame, 0.14, 0.9, 0.057)
    desc.set_text_size(0.03)
    desc.itemD("#chi^{2}/ndf", frame.chiSquare("pdf_logPt2", "data", 2), -1,
               rt.kRed)
    desc.itemD("#it{A}", a, -1, rt.kRed)
    desc.itemR("#it{b}", b, rt.kRed)
    #desc.draw()

    #put the sum
    hSum.Draw("same")

    frame.Draw("same")

    #put gamma-gamma and coherent J/psi
    hPtGG.Draw("same")
    hPtCoh.Draw("same")

    #ut.invert_col(rt.gPad)
    can.SaveAs("01fig.pdf")
Example #4
0
def pdf_logPt2_incoh():

    #PDF fit to log_10(pT^2)

    #tree_in = tree_incoh
    tree_in = tree

    #ptbin = 0.04
    ptbin = 0.12
    ptmin = -5.
    ptmax = 1.

    mmin = 2.8
    mmax = 3.2

    #fitran = [-5., 1.]
    fitran = [-0.9, 0.1]

    binned = False

    #gamma-gamma 131 evt for pT<0.18

    #output log file
    out = open("out.txt", "w")
    ut.log_results(
        out, "in " + infile + " in_coh " + infile_coh + " in_gg " + infile_gg)
    loglist = [(x, eval(x)) for x in
               ["ptbin", "ptmin", "ptmax", "mmin", "mmax", "fitran", "binned"]]
    strlog = ut.make_log_string(loglist)
    ut.log_results(out, strlog + "\n")

    #input data
    pT = RooRealVar("jRecPt", "pT", 0, 10)
    m = RooRealVar("jRecM", "mass", 0, 10)
    dataIN = RooDataSet("data", "data", tree_in, RooArgSet(pT, m))
    strsel = "jRecM>{0:.3f} && jRecM<{1:.3f}".format(mmin, mmax)
    data = dataIN.reduce(strsel)
    #x is RooRealVar for log(Pt2)
    draw = "TMath::Log10(jRecPt*jRecPt)"
    draw_func = RooFormulaVar("x", "log_{10}( #it{p}_{T}^{2} ) (GeV^{2})",
                              draw, RooArgList(pT))
    x = data.addColumn(draw_func)
    x.setRange("fitran", fitran[0], fitran[1])

    #binned data
    nbins, ptmax = ut.get_nbins(ptbin, ptmin, ptmax)
    hPt = TH1D("hPt", "hPt", nbins, ptmin, ptmax)
    tree_in.Draw(draw + " >> hPt", strsel)
    dataH = RooDataHist("dataH", "dataH", RooArgList(x), hPt)

    #range for plot
    x.setMin(ptmin)
    x.setMax(ptmax)
    x.setRange("plotran", ptmin, ptmax)

    #create the pdf
    b = RooRealVar("b", "b", 5., 0., 10.)
    pdf_func = "log(10.)*pow(10.,x)*exp(-b*pow(10.,x))"
    pdf_logPt2 = RooGenericPdf("pdf_logPt2", pdf_func, RooArgList(x, b))

    #make the fit
    if binned == True:
        r1 = pdf_logPt2.fitTo(dataH, rf.Range("fitran"), rf.Save())
    else:
        r1 = pdf_logPt2.fitTo(data, rf.Range("fitran"), rf.Save())

    ut.log_results(out, ut.log_fit_result(r1))

    #calculate norm to number of events
    xset = RooArgSet(x)
    ipdf = pdf_logPt2.createIntegral(xset, rf.NormSet(xset),
                                     rf.Range("fitran"))
    print "PDF integral:", ipdf.getVal()
    if binned == True:
        nevt = tree_incoh.Draw(
            "", strsel + " && " + draw + ">{0:.3f}".format(fitran[0]) +
            " && " + draw + "<{1:.3f}".format(fitran[0], fitran[1]))
    else:
        nevt = data.sumEntries("x", "fitran")

    print "nevt:", nevt
    pdf_logPt2.setNormRange("fitran")
    print "PDF norm:", pdf_logPt2.getNorm(RooArgSet(x))

    #a = nevt/ipdf.getVal()
    a = nevt / pdf_logPt2.getNorm(RooArgSet(x))
    ut.log_results(out, "log_10(pT^2) parametrization:")
    ut.log_results(out, "A = {0:.2f}".format(a))
    ut.log_results(out, ut.log_fit_parameters(r1, 0, 2))
    print "a =", a

    #Coherent contribution
    hPtCoh = ut.prepare_TH1D("hPtCoh", ptbin, ptmin, ptmax)
    hPtCoh.Sumw2()
    #tree_coh.Draw(draw + " >> hPtCoh", strsel)
    tree_coh.Draw("TMath::Log10(jGenPt*jGenPt) >> hPtCoh", strsel)
    ut.norm_to_data(hPtCoh, hPt, rt.kBlue, -5., -2.2)  # norm for coh
    #ut.norm_to_data(hPtCoh, hPt, rt.kBlue, -5, -2.1)
    #ut.norm_to_num(hPtCoh, 405, rt.kBlue)
    print "Coherent integral:", hPtCoh.Integral()

    #TMath::Log10(jRecPt*jRecPt)

    #Sartre generated coherent shape
    sartre = TFile.Open(
        "/home/jaroslav/sim/sartre_tx/sartre_AuAu_200GeV_Jpsi_coh_2p7Mevt.root"
    )
    sartre_tree = sartre.Get("sartre_tree")
    hSartre = ut.prepare_TH1D("hSartre", ptbin, ptmin, ptmax)
    sartre_tree.Draw("TMath::Log10(pT*pT) >> hSartre",
                     "rapidity>-1 && rapidity<1")
    ut.norm_to_data(hSartre, hPt, rt.kViolet, -5, -2)  # norm for Sartre

    #gamma-gamma contribution
    hPtGG = ut.prepare_TH1D("hPtGG", ptbin, ptmin, ptmax)
    tree_gg.Draw(draw + " >> hPtGG", strsel)
    #ut.norm_to_data(hPtGG, hPt, rt.kGreen, -5., -2.9)
    ut.norm_to_num(hPtGG, 131., rt.kGreen)

    print "Int GG:", hPtGG.Integral()

    #psi' contribution
    psiP = TFile.Open(basedir_mc + "/ana_slight14e4x1_s6_sel5z.root")
    psiP_tree = psiP.Get("jRecTree")
    hPtPsiP = ut.prepare_TH1D("hPtPsiP", ptbin, ptmin, ptmax)
    psiP_tree.Draw(draw + " >> hPtPsiP", strsel)
    ut.norm_to_num(hPtPsiP, 12, rt.kViolet)

    #sum of all contributions
    hSum = ut.prepare_TH1D("hSum", ptbin, ptmin, ptmax)
    hSum.SetLineWidth(3)
    #add ggel to the sum
    hSum.Add(hPtGG)
    #add incoherent contribution
    func_logPt2 = TF1("pdf_logPt2",
                      "[0]*log(10.)*pow(10.,x)*exp(-[1]*pow(10.,x))", -10.,
                      10.)
    func_logPt2.SetParameters(a, b.getVal())
    hInc = ut.prepare_TH1D("hInc", ptbin, ptmin, ptmax)
    ut.fill_h1_tf(hInc, func_logPt2)
    hSum.Add(hInc)
    #add coherent contribution
    hSum.Add(hPtCoh)
    #add psi(2S) contribution
    #hSum.Add(hPtPsiP)
    #set to draw as a lines
    ut.line_h1(hSum, rt.kBlack)

    #create canvas frame
    can = ut.box_canvas()
    ut.set_margin_lbtr(gPad, 0.11, 0.09, 0.01, 0.01)

    frame = x.frame(rf.Bins(nbins), rf.Title(""))
    frame.SetTitle("")
    frame.SetMaximum(75)

    frame.SetYTitle("Events / ({0:.3f}".format(ptbin) + " GeV^{2})")

    print "Int data:", hPt.Integral()

    #plot the data
    if binned == True:
        dataH.plotOn(frame, rf.Name("data"))
    else:
        data.plotOn(frame, rf.Name("data"))

    pdf_logPt2.plotOn(frame, rf.Range("fitran"), rf.LineColor(rt.kRed),
                      rf.Name("pdf_logPt2"))
    pdf_logPt2.plotOn(frame, rf.Range("plotran"), rf.LineColor(rt.kRed),
                      rf.Name("pdf_logPt2_full"), rf.LineStyle(rt.kDashed))

    frame.Draw()

    amin = TMath.Power(10, ptmin)
    amax = TMath.Power(10, ptmax) - 1
    print amin, amax
    pt2func = TF1("f1", "TMath::Power(10, x)", amin,
                  amax)  #TMath::Power(x, 10)
    aPt2 = TGaxis(-5, 75, 1, 75, "f1", 510, "-")
    ut.set_axis(aPt2)
    aPt2.SetTitle("pt2")
    #aPt2.Draw();

    leg = ut.prepare_leg(0.57, 0.78, 0.14, 0.19, 0.03)
    ut.add_leg_mass(leg, mmin, mmax)
    hx = ut.prepare_TH1D("hx", 1, 0, 1)
    hx.Draw("same")
    ln = ut.col_lin(rt.kRed)
    leg.AddEntry(hx, "Data")
    leg.AddEntry(hPtCoh, "Sartre MC", "l")
    leg.AddEntry(hPtGG, "#gamma#gamma#rightarrow e^{+}e^{-} MC", "l")
    #leg.AddEntry(ln, "ln(10)*#it{A}*10^{log_{10}#it{p}_{T}^{2}}exp(-#it{b}10^{log_{10}#it{p}_{T}^{2}})", "l")
    #leg.AddEntry(ln, "Incoherent fit", "l")
    leg.Draw("same")

    l0 = ut.cut_line(fitran[0], 0.9, frame)
    l1 = ut.cut_line(fitran[1], 0.9, frame)
    #l0.Draw()
    #l1.Draw()

    desc = pdesc(frame, 0.14, 0.8, 0.054)
    desc.set_text_size(0.03)
    desc.itemD("#chi^{2}/ndf", frame.chiSquare("pdf_logPt2", "data", 2), -1,
               rt.kRed)
    desc.itemD("#it{A}", a, -1, rt.kRed)
    desc.itemR("#it{b}", b, rt.kRed)
    desc.draw()

    #put the sum
    #hSum.Draw("same")

    #gPad.SetLogy()

    frame.Draw("same")

    #put gamma-gamma
    hPtGG.Draw("same")
    #put coherent J/psi
    hPtCoh.Draw("same")

    #put Sartre generated coherent shape
    #hSartre.Draw("same")

    #put psi(2S) contribution
    #hPtPsiP.Draw("same")

    leg2 = ut.prepare_leg(0.14, 0.9, 0.14, 0.08, 0.03)
    leg2.AddEntry(
        ln,
        "ln(10)*#it{A}*10^{log_{10}#it{p}_{T}^{2}}exp(-#it{b}10^{log_{10}#it{p}_{T}^{2}})",
        "l")
    #leg2.AddEntry(hPtCoh, "Sartre MC reconstructed", "l")
    #leg2.AddEntry(hSartre, "Sartre MC generated", "l")
    leg2.Draw("same")

    ut.invert_col(rt.gPad)
    can.SaveAs("01fig.pdf")
Example #5
0
    inp = TFile.Open(basedir + "/" + infile)
    tree = inp.Get("jRecTree")

    #output log file
    out = open("out.txt", "w")
    #log fit parameters
    loglist1 = [(x, eval(x)) for x in ["infile", "mbin", "mmin", "mmax"]]
    loglist2 = [
        (x, eval(x))
        for x in ["ymin", "ymax", "ptmax", "binned", "fitran[0]", "fitran[1]"]
    ]
    strlog = ut.make_log_string(loglist1, loglist2)
    ut.log_results(out, strlog + "\n")

    #unbinned and binned input data
    nbins, mmax = ut.get_nbins(mbin, mmin, mmax)
    strsel = "jRecY>{0:.3f} && jRecY<{1:.3f} && jRecPt<{2:.3f}".format(
        ymin, ymax, ptmax)
    #unbinned data
    m.setMin(mmin)
    m.setMax(mmax)
    m.setRange("fitran", fitran[0], fitran[1])
    dataIN = RooDataSet("data", "data", tree, RooArgSet(m, y, pT))
    data = dataIN.reduce(strsel)
    #binned data
    hMass = TH1D("hMass", "hMass", nbins, mmin, mmax)
    tree.Draw("jRecM >> hMass", strsel)
    dataH = RooDataHist("dataH", "dataH", RooArgList(m), hMass)

    #make the fit
    if binned == True:
Example #6
0
def fit():

    #fit to log_10(pT^2) with components and plot of plain pT^2

    #range in log_10(pT^2)
    ptbin = 0.12
    ptmin = -5.
    ptmax = 0.99  # 1.01

    #range in pT^2
    ptsq_bin = 0.03
    ptsq_min = 1e-5
    ptsq_max = 1

    mmin = 2.8
    mmax = 3.2

    #range for incoherent fit
    fitran = [-0.9, 0.1]

    #number of gamma-gamma events
    ngg = 131

    #number of psi' events
    npsiP = 20

    #input data
    pT = RooRealVar("jRecPt", "pT", 0, 10)
    m = RooRealVar("jRecM", "mass", 0, 10)
    data_all = RooDataSet("data", "data", tree, RooArgSet(pT, m))
    #select for mass range
    strsel = "jRecM>{0:.3f} && jRecM<{1:.3f}".format(mmin, mmax)
    data = data_all.reduce(strsel)

    #create log(pT^2) from pT
    ptsq_draw = "jRecPt*jRecPt"  # will be used for pT^2
    logPtSq_draw = "TMath::Log10(" + ptsq_draw + ")"
    logPtSq_form = RooFormulaVar("logPtSq", "logPtSq", logPtSq_draw,
                                 RooArgList(pT))
    logPtSq = data.addColumn(logPtSq_form)
    logPtSq.setRange("fitran", fitran[0], fitran[1])

    #bins and range for the plot
    nbins, ptmax = ut.get_nbins(ptbin, ptmin, ptmax)
    logPtSq.setMin(ptmin)
    logPtSq.setMax(ptmax)
    logPtSq.setRange("plotran", ptmin, ptmax)

    #range for pT^2
    ptsq_nbins, ptsq_max = ut.get_nbins(ptsq_bin, ptsq_min, ptsq_max)

    #incoherent parametrization
    bval = RooRealVar("bval", "bval", 3.3, 0, 10)
    inc_form = "log(10.)*pow(10.,logPtSq)*exp(-bval*pow(10.,logPtSq))"
    incpdf = RooGenericPdf("incpdf", inc_form, RooArgList(logPtSq, bval))

    #make the incoherent fit
    res = incpdf.fitTo(data, rf.Range("fitran"), rf.Save())

    #get incoherent norm to the number of events
    lset = RooArgSet(logPtSq)
    iinc = incpdf.createIntegral(lset, rf.NormSet(lset), rf.Range("fitran"))
    inc_nevt = data.sumEntries("logPtSq", "fitran")
    incpdf.setNormRange("fitran")
    aval = RooRealVar("aval", "aval", inc_nevt / incpdf.getNorm(lset))
    #print "A =", aval.getVal()
    #print "b =", bval.getVal()

    #incoherent distribution from log_10(pT^2) function for the sum with gamma-gamma
    hIncPdf = ut.prepare_TH1D_n("hGG", nbins, ptmin, ptmax)
    func_incoh_logPt2 = TF1("func_incoh_logPt2",
                            "[0]*log(10.)*pow(10.,x)*exp(-[1]*pow(10.,x))",
                            -10., 10.)
    func_incoh_logPt2.SetNpx(1000)
    func_incoh_logPt2.SetLineColor(rt.kMagenta)
    func_incoh_logPt2.SetParameters(
        aval.getVal(),
        bval.getVal())  # 4.9 from incoherent mc, 3.3 from data fit
    ut.fill_h1_tf(hIncPdf, func_incoh_logPt2, rt.kMagenta)

    #gamma-gamma contribution
    hGG = ut.prepare_TH1D_n("hGG", nbins, ptmin, ptmax)
    tree_gg.Draw(logPtSq_draw + " >> hGG", strsel)
    ut.norm_to_num(hGG, ngg, rt.kGreen + 1)

    #sum of incoherent distribution and gamma-gamma
    hSumIncGG = ut.prepare_TH1D_n("hSumIncGG", nbins, ptmin, ptmax)
    hSumIncGG.Add(hIncPdf)
    hSumIncGG.Add(hGG)
    ut.line_h1(hSumIncGG, rt.kMagenta)

    #gamma-gamma in pT^2
    hGG_ptsq = ut.prepare_TH1D_n("hGG_ptsq", ptsq_nbins, ptsq_min, ptsq_max)
    tree_gg.Draw(ptsq_draw + " >> hGG_ptsq", strsel)
    ut.norm_to_num(hGG_ptsq, ngg, rt.kGreen + 1)

    #psi' contribution
    psiP_file = TFile.Open(basedir_mc + "/ana_slight14e4x1_s6_sel5z.root")
    psiP_tree = psiP_file.Get("jRecTree")
    hPsiP = ut.prepare_TH1D_n("hPsiP", nbins, ptmin, ptmax)
    psiP_tree.Draw(logPtSq_draw + " >> hPsiP", strsel)
    ut.norm_to_num(hPsiP, npsiP, rt.kViolet)

    #psi' in pT^2
    hPsiP_ptsq = ut.prepare_TH1D_n("hPsiP_ptsq", ptsq_nbins, ptsq_min,
                                   ptsq_max)
    psiP_tree.Draw(ptsq_draw + " >> hPsiP_ptsq", strsel)
    ut.norm_to_num(hPsiP_ptsq, npsiP, rt.kViolet)

    #create canvas frame
    gStyle.SetPadTickY(1)
    can = ut.box_canvas(1086, 543)  # square area is still 768^2
    can.SetMargin(0, 0, 0, 0)
    can.Divide(2, 1, 0, 0)
    gStyle.SetLineWidth(1)

    can.cd(1)
    ut.set_margin_lbtr(gPad, 0.11, 0.1, 0.01, 0)

    frame = logPtSq.frame(rf.Bins(nbins))
    frame.SetTitle("")
    frame.SetMaximum(80)

    frame.SetYTitle("Events / ({0:.3f}".format(ptbin) + " GeV^{2})")
    frame.SetXTitle("log_{10}( #it{p}_{T}^{2} ) (GeV^{2})")

    frame.GetXaxis().SetTitleOffset(1.2)
    frame.GetYaxis().SetTitleOffset(1.6)

    #plot the data
    data.plotOn(frame, rf.Name("data"), rf.LineWidth(2))

    #incoherent parametrization
    incpdf.plotOn(frame, rf.Range("fitran"), rf.LineColor(rt.kRed),
                  rf.Name("incpdf"), rf.LineWidth(2))
    incpdf.plotOn(frame, rf.Range("plotran"), rf.LineColor(rt.kRed),
                  rf.Name("incpdf_full"), rf.LineStyle(rt.kDashed),
                  rf.LineWidth(2))

    frame.Draw()

    #add gamma-gamma contribution
    hGG.Draw("same")

    #sum of incoherent distribution and gamma-gamma
    #hSumIncGG.Draw("same")

    #add psi'
    #hPsiP.Draw("same")

    #legend for log_10(pT^2)
    leg = ut.prepare_leg(0.15, 0.77, 0.28, 0.19, 0.035)
    hxl = ut.prepare_TH1D("hxl", 1, 0, 1)
    hxl.Draw("same")
    ilin = ut.col_lin(rt.kRed, 2)
    ilin2 = ut.col_lin(rt.kRed, 2)
    ilin2.SetLineStyle(rt.kDashed)
    leg.AddEntry(ilin, "Incoherent parametrization, fit region", "l")
    leg.AddEntry(ilin2, "Incoherent parametrization, extrapolation region",
                 "l")
    leg.AddEntry(hGG, "#gamma#gamma#rightarrow e^{+}e^{-}", "l")
    #leg.AddEntry(hxl, "Data", "lp")
    leg.AddEntry(hxl, "Data, log_{10}( #it{p}_{T}^{2} )", "lp")
    leg.Draw("same")

    #----- plot pT^2 on the right -----

    #pT^2 variable from pT
    ptsq_form = RooFormulaVar("ptsq", "ptsq", ptsq_draw, RooArgList(pT))
    ptsq = data.addColumn(ptsq_form)

    #range for pT^2 plot
    ptsq.setMin(ptsq_min)
    ptsq.setMax(ptsq_max)

    #make the pT^2 plot
    can.cd(2)
    gPad.SetLogy()
    #gPad.SetLineWidth(3)
    #gPad.SetFrameLineWidth(1)
    ut.set_margin_lbtr(gPad, 0, 0.1, 0.01, 0.15)

    ptsq_frame = ptsq.frame(rf.Bins(ptsq_nbins), rf.Title(""))

    #print type(ptsq_frame), type(ptsq)

    ptsq_frame.SetTitle("")

    ptsq_frame.SetXTitle("#it{p}_{T}^{2} (GeV^{2})")
    ptsq_frame.GetXaxis().SetTitleOffset(1.2)

    data.plotOn(ptsq_frame, rf.Name("data"), rf.LineWidth(2))

    ptsq_frame.SetMaximum(9e2)
    ptsq_frame.SetMinimum(0.8)  # 0.101

    ptsq_frame.Draw()

    #incoherent parametrization in pT^2 over the fit region, scaled to the plot
    inc_ptsq = TF1("inc_ptsq", "[0]*exp(-[1]*x)", 10**fitran[0], 10**fitran[1])
    inc_ptsq.SetParameters(aval.getVal() * ptsq_bin, bval.getVal())

    #incoherent parametrization in the extrapolation region, below and above the fit region
    inc_ptsq_ext1 = TF1("inc_ptsq_ext1", "[0]*exp(-[1]*x)", 0., 10**fitran[0])
    inc_ptsq_ext2 = TF1("inc_ptsq_ext2", "[0]*exp(-[1]*x)", 10**fitran[1], 10)
    inc_ptsq_ext1.SetParameters(aval.getVal() * ptsq_bin, bval.getVal())
    inc_ptsq_ext1.SetLineStyle(rt.kDashed)
    inc_ptsq_ext2.SetParameters(aval.getVal() * ptsq_bin, bval.getVal())
    inc_ptsq_ext2.SetLineStyle(rt.kDashed)

    inc_ptsq.Draw("same")
    inc_ptsq_ext1.Draw("same")
    inc_ptsq_ext2.Draw("same")

    #add gamma-gamma in pT^2
    hGG_ptsq.Draw("same")

    #add psi' in pT^2
    #hPsiP_ptsq.Draw("same")

    #redraw the frame
    #ptsq_frame.Draw("same")

    ptsq_frame.GetXaxis().SetLimits(-9e-3, ptsq_frame.GetXaxis().GetXmax())

    #vertical axis for pT^2 plot
    xpos = ptsq_frame.GetXaxis().GetXmax()
    ypos = ptsq_frame.GetMaximum()
    ymin = ptsq_frame.GetMinimum()

    ptsq_axis = TGaxis(xpos, 0, xpos, ypos, ymin, ypos, 510, "+GL")
    ut.set_axis(ptsq_axis)
    ptsq_axis.SetMoreLogLabels()

    ptsq_axis.SetTitle("Events / ({0:.3f}".format(ptsq_bin) + " GeV^{2})")
    ptsq_axis.SetTitleOffset(2.2)

    ptsq_axis.Draw()

    #legend for input data
    #dleg = ut.prepare_leg(0.4, 0.77, 0.14, 0.18, 0.035)
    dleg = ut.prepare_leg(0.4, 0.71, 0.16, 0.24, 0.035)
    dleg.AddEntry(None, "#bf{|#kern[0.3]{#it{y}}| < 1}", "")
    ut.add_leg_mass(dleg, mmin, mmax)
    dleg.AddEntry(None, "AuAu@200 GeV", "")
    dleg.AddEntry(None, "UPC sample", "")
    dleg.AddEntry(hxl, "Data, #it{p}_{T}^{2}", "lp")
    dleg.Draw("same")

    #ut.invert_col_can(can)
    can.SaveAs("01fig.pdf")
Example #7
0
def resolution():

    #relative energy resolution

    #ALICE PHOS has 3% in 0.2 - 10 GeV, PHOS TDR page 113 (127)

    emin = -0.4
    emax = 0.4
    ebin = 0.01

    #reconstruct the energy from detected optical photons

    gRec = rec(False)

    #construct the relative energy resolution
    nbins, emax = ut.get_nbins(ebin, emin, emax)
    hRes = ut.prepare_TH1D_n("hRes", nbins, emin, emax)

    egen = rt.Double()
    erec = rt.Double()
    for i in xrange(gRec.GetN()):
        gRec.GetPoint(i, egen, erec)
        hRes.Fill( (erec-egen)/egen )

    #fit the resolution with Breit-Wigner pdf
    x = RooRealVar("x", "x", -0.5, 0.5)
    x.setRange("fitran", -0.21, 0.21)
    rfRes = RooDataHist("rfRes", "rfRes", RooArgList(x), hRes)

    #Breit-Wigner pdf
    mean = RooRealVar("mean", "mean", 0., -0.1, 0.1)
    sigma = RooRealVar("sigma", "sigma", 0.01, 0., 0.9)
    bwpdf = RooBreitWigner("bwpdf", "bwpdf", x, mean, sigma)

    rfres = bwpdf.fitTo(rfRes, rf.Range("fitran"), rf.Save())

    #log the results to a file
    out = open("out.txt", "w")
    out.write(ut.log_fit_result(rfres))

    #plot the resolution
    can = ut.box_canvas()

    frame = x.frame(rf.Bins(nbins), rf.Title(""))
    frame.SetTitle("")
    frame.SetXTitle("Relative energy resolution (#it{E}_{rec}-#it{E}_{gen})/#it{E}_{gen}")

    frame.GetXaxis().SetTitleOffset(1.4)
    frame.GetYaxis().SetTitleOffset(1.6)

    ut.set_margin_lbtr(gPad, 0.11, 0.1, 0.01, 0.03)

    rfRes.plotOn(frame, rf.Name("data"))

    bwpdf.plotOn(frame, rf.Precision(1e-6), rf.Name("bwpdf"))

    frame.Draw()

    leg = ut.prepare_leg(0.65, 0.78, 0.28, 0.15, 0.035)
    leg.SetMargin(0.17)
    hx = ut.prepare_TH1D("hx", 1, 0, 1)
    hx.Draw("same")
    leg.AddEntry(hx, "#frac{#it{E}_{rec} - #it{E}_{gen}}{#it{E}_{gen}}")
    lx = ut.col_lin(rt.kBlue)
    leg.AddEntry(lx, "Breit-Wigner fit", "l")
    leg.Draw("same")

    #fit parameters on the plot
    desc = pdesc(frame, 0.67, 0.7, 0.05); #x, y, sep
    #desc.set_text_size(0.03)
    desc.itemD("#chi^{2}/ndf", frame.chiSquare("bwpdf", "data", 2), -1, rt.kBlue)
    desc.prec = 4
    desc.itemR("mean", mean, rt.kBlue)
    desc.itemR("#sigma", sigma, rt.kBlue)
    desc.draw()

    #ut.invert_col(rt.gPad)
    can.SaveAs("01fig.pdf")
Example #8
0
def plot_rec_minus_gen_pt2():

    #reconstructed pT^2 vs. generated pT^2 for resolution

    #distribution range
    ptbin = 0.001
    ptmin = -0.1
    ptmax = 0.15

    #generated pT^2 selection to input data
    ptlo = 0.04
    pthi = 0.1

    #mass selection
    mmin = 2.8
    mmax = 3.2

    fitran = [-0.003, 0.05]
    #fitran = [-0.003, 0.003]

    strsel = "jRecM>{0:.3f} && jRecM<{1:.3f}".format(mmin, mmax)
    strsel += " && (jGenPt*jGenPt)>{0:.3f}".format(ptlo)
    strsel += " && (jGenPt*jGenPt)<{0:.3f}".format(pthi)

    print strsel

    nbins, ptmax = ut.get_nbins(ptbin, ptmin, ptmax)
    hPt2 = ut.prepare_TH1D("hPt2", ptbin, ptmin, ptmax)

    ytit = "Events / ({0:.3f}".format(ptbin) + " GeV^{2})"
    xtit = "#it{p}_{T, reconstructed}^{2} - #it{p}_{T, generated}^{2} (GeV^{2})"
    ut.put_yx_tit(hPt2, ytit, xtit)

    draw = "(jRecPt*jRecPt)-(jGenPt*jGenPt)"

    mctree.Draw(draw + " >> hPt2", strsel)

    #roofit binned data
    x = RooRealVar("x", "x", -1, 1)
    dataH = RooDataHist("dataH", "dataH", RooArgList(x), hPt2)

    x.setRange("fitran", fitran[0], fitran[1])

    #reversed Crystal Ball
    mean = RooRealVar("mean", "mean", 0., -0.1, 0.1)
    sigma = RooRealVar("sigma", "sigma", 0.0011, 0., 0.1)
    alpha = RooRealVar("alpha", "alpha", -1.046, -10., 0.)
    n = RooRealVar("n", "n", 1.403, 0., 20.)
    pdf = RooCBShape("pdf", "pdf", x, mean, sigma, alpha, n)

    #gaus = RooGaussian("gaus", "gaus", x, mean, sigma)

    #make the fit
    #res = pdf.fitTo(dataH, rf.Range("fitran"), rf.Save())
    #res = gaus.fitTo(dataH, rf.Range("fitran"), rf.Save())

    can = ut.box_canvas()
    ut.set_margin_lbtr(gPad, 0.12, 0.1, 0.015, 0.03)

    frame = x.frame(rf.Bins(nbins), rf.Title(""))
    frame.SetTitle("")

    frame.SetYTitle(ytit)
    frame.SetXTitle(xtit)

    frame.GetXaxis().SetTitleOffset(1.2)
    frame.GetYaxis().SetTitleOffset(1.7)

    dataH.plotOn(frame, rf.Name("data"))

    pdf.plotOn(frame, rf.Precision(1e-6), rf.Name("pdf"))
    #gaus.plotOn(frame, rf.Precision(1e-6), rf.Name("gaus"))

    frame.Draw()

    ut.invert_col(rt.gPad)
    can.SaveAs("01fig.pdf")
Example #9
0
    #predictions
    gSlight = load_starlight(dy)
    gMS = load_ms()
    gCCK = load_cck()
    #gSartre = load_sartre()

    #open the inputs
    inp = TFile.Open(basedir + "/" + infile)
    tree = inp.Get("jRecTree")
    inp_gg = TFile.Open(basedir_gg + "/" + infile_gg)
    tree_gg = inp_gg.Get("jRecTree")
    inp_coh = TFile.Open(basedir_coh + "/" + infile_coh)
    tree_coh_gen = inp_coh.Get("jGenTree")

    #evaluate binning
    print "bins:", ut.get_nbins(ptbin, ptmin, ptmax)
    bins = vector(rt.double)()
    #bins.push_back(ptmin)
    #while True:
    #    if bins[bins.size()-1] < ptmid:
    #        increment = ptbin
    #    else:
    #        increment = ptlon
    #    bins.push_back( bins[bins.size()-1] + increment )
    #    if bins[bins.size()-1] > ptmax: break

    bins = ut.get_bins_vec_2pt(ptbin, ptlon, ptmin, ptmax, ptmid)

    print "bins2:", bins.size() - 1

    #data and gamma-gamma histograms
Example #10
0
def plot_rec_minus_gen_pt():

    #reconstructed pT vs. generated pT for resolution

    #distribution range
    ptbin = 0.005
    ptmin = -0.2
    ptmax = 0.4

    #generated pT selection to input data
    ptlo = 0
    pthi = 0.1

    #mass selection
    mmin = 2.8
    mmax = 3.2

    #range for the fit
    fitran = [-0.02, 0.2]

    strsel = "jRecM>{0:.3f} && jRecM<{1:.3f}".format(mmin, mmax)
    strsel += " && jGenPt>{0:.3f}".format(ptlo)
    strsel += " && jGenPt<{0:.3f}".format(pthi)

    nbins, ptmax = ut.get_nbins(ptbin, ptmin, ptmax)
    hPtDiff = ut.prepare_TH1D("hPtDiff", ptbin, ptmin, ptmax)

    ytit = "Events / ({0:.3f}".format(ptbin) + " GeV)"
    xtit = "#it{p}_{T, reconstructed} - #it{p}_{T, generated} (GeV)"

    mctree.Draw("jRecPt-jGenPt >> hPtDiff", strsel)

    #roofit binned data
    x = RooRealVar("x", "x", -1, 1)
    x.setRange("fitran", fitran[0], fitran[1])
    rfPt = RooDataHist("rfPt", "rfPt", RooArgList(x), hPtDiff)

    #reversed Crystal Ball
    mean = RooRealVar("mean", "mean", 0., -0.1, 0.1)
    sigma = RooRealVar("sigma", "sigma", 0.01, 0., 0.1)
    alpha = RooRealVar("alpha", "alpha", -1.046, -10., 0.)
    n = RooRealVar("n", "n", 1.403, 0., 20.)
    pdf = RooCBShape("pdf", "pdf", x, mean, sigma, alpha, n)

    #make the fit
    res = pdf.fitTo(rfPt, rf.Range("fitran"), rf.Save())

    can = ut.box_canvas()
    ut.set_margin_lbtr(gPad, 0.12, 0.1, 0.05, 0.03)

    frame = x.frame(rf.Bins(nbins), rf.Title(""))
    ut.put_frame_yx_tit(frame, ytit, xtit)

    rfPt.plotOn(frame, rf.Name("data"))

    pdf.plotOn(frame, rf.Precision(1e-6), rf.Name("pdf"))

    frame.Draw()

    ut.invert_col(rt.gPad)
    can.SaveAs("01fig.pdf")
Example #11
0
def plot_rec_gen_pt_relative():

    # relative dielectron pT resolution as ( pT_rec - pT_gen )/pT_gen

    ptbin = 0.01
    ptmin = -1.2
    ptmax = 4

    #generated pT selection to input data
    ptlo = 0.2
    pthi = 1.

    fitran = [-0.1, 3]

    mmin = 2.8
    mmax = 3.2

    #output log file
    out = open("out.txt", "w")
    #log fit parameters
    loglist1 = [(x, eval(x)) for x in ["infile_mc", "ptbin", "ptmin", "ptmax"]]
    loglist2 = [(x, eval(x))
                for x in ["ptlo", "pthi", "fitran", "mmin", "mmax"]]
    strlog = ut.make_log_string(loglist1, loglist2)
    ut.log_results(out, strlog + "\n")

    strsel = "jRecM>{0:.3f} && jRecM<{1:.3f}".format(mmin, mmax)
    strsel += " && jGenPt>{0:.3f}".format(ptlo)
    strsel += " && jGenPt<{0:.3f}".format(pthi)

    nbins, ptmax = ut.get_nbins(ptbin, ptmin, ptmax)
    hPtRel = ut.prepare_TH1D("hPtRel", ptbin, ptmin, ptmax)

    ytit = "Events / ({0:.3f})".format(ptbin)
    xtit = "(#it{p}_{T, rec} - #it{p}_{T, gen})/#it{p}_{T, gen}"

    mctree.Draw("(jRecPt-jGenPt)/jGenPt >> hPtRel", strsel)

    x = RooRealVar("x", "x", ptmin, ptmax)
    x.setRange("fitran", fitran[0], fitran[1])
    rfPtRel = RooDataHist("rfPtRel", "rfPtRel", RooArgList(x), hPtRel)

    #reversed Crystal Ball
    mean = RooRealVar("mean", "mean", 0., -0.1, 0.1)
    sigma = RooRealVar("sigma", "sigma", 0.2, 0., 0.9)
    alpha = RooRealVar("alpha", "alpha", -1.2, -10., 0.)
    n = RooRealVar("n", "n", 1.3, 0., 20.)
    cbpdf = RooCBShape("cbpdf", "cbpdf", x, mean, sigma, alpha, n)

    res = cbpdf.fitTo(rfPtRel, rf.Range("fitran"), rf.Save())

    #log fit results
    ut.log_results(out, ut.log_fit_result(res))

    can = ut.box_canvas()
    ut.set_margin_lbtr(gPad, 0.12, 0.1, 0.05, 0.03)

    frame = x.frame(rf.Bins(nbins), rf.Title(""))
    ut.put_frame_yx_tit(frame, ytit, xtit)

    rfPtRel.plotOn(frame, rf.Name("data"))

    cbpdf.plotOn(frame, rf.Precision(1e-6), rf.Name("cbpdf"))

    frame.Draw()

    desc = pdesc(frame, 0.65, 0.8, 0.057)
    #x, y, sep
    desc.set_text_size(0.03)

    desc.itemD("#chi^{2}/ndf", frame.chiSquare("cbpdf", "data", 4), -1,
               rt.kBlue)
    desc.prec = 5
    desc.itemR("mean", mean, rt.kBlue)
    desc.prec = 4
    desc.itemR("#sigma", sigma, rt.kBlue)
    desc.itemR("#alpha", alpha, rt.kBlue)
    desc.prec = 3
    desc.itemR("#it{n}", n, rt.kBlue)
    desc.draw()

    leg = ut.prepare_leg(0.6, 0.82, 0.21, 0.12, 0.03)  # x, y, dx, dy, tsiz
    leg.SetMargin(0.05)
    leg.AddEntry(0, "#bf{%.1f < #it{p}_{T}^{pair} < %.1f GeV}" % (ptlo, pthi),
                 "")
    leg.Draw("same")

    #ut.invert_col(rt.gPad)
    can.SaveAs("01fig.pdf")
Example #12
0
def plot_rec_gen_track_pt():

    #track pT resolution as ( pT_track_rec - pT_track_gen )/pT_track_gen

    ptbin = 0.001
    ptmin = -0.3
    ptmax = 0.1

    #generated dielectron pT selection to input data
    ptlo = 0.2
    pthi = 1

    fitran = [-0.15, 0.018]

    mmin = 2.8
    mmax = 3.2

    ccb = rt.kBlue

    #output log file
    out = open("out.txt", "w")
    #log fit parameters
    loglist1 = [(x, eval(x)) for x in ["infile_mc", "ptbin", "ptmin", "ptmax"]]
    loglist2 = [(x, eval(x))
                for x in ["ptlo", "pthi", "fitran", "mmin", "mmax"]]
    strlog = ut.make_log_string(loglist1, loglist2)
    ut.log_results(out, strlog + "\n")

    strsel = "jRecM>{0:.3f} && jRecM<{1:.3f}".format(mmin, mmax)
    strsel += " && jGenPt>{0:.3f}".format(ptlo)
    strsel += " && jGenPt<{0:.3f}".format(pthi)
    #strsel = ""

    nbins, ptmax = ut.get_nbins(ptbin, ptmin, ptmax)
    hPtTrackRel = ut.prepare_TH1D_n("hPtTrackRel", nbins, ptmin, ptmax)

    ytit = "Events / ({0:.3f})".format(ptbin)
    xtit = "(#it{p}_{T, rec}^{track} - #it{p}_{T, gen}^{track})/#it{p}_{T, gen}^{track}"

    mctree.Draw("(jT0pT-jGenP0pT)/jGenP0pT >> hPtTrackRel",
                strsel)  # positive charge
    mctree.Draw("(jT1pT-jGenP1pT)/jGenP1pT >>+hPtTrackRel",
                strsel)  # add negative charge

    x = RooRealVar("x", "x", ptmin, ptmax)
    x.setRange("fitran", fitran[0], fitran[1])
    rfPtTrackRel = RooDataHist("rfPtTrackRel", "rfPtTrackRel", RooArgList(x),
                               hPtTrackRel)

    #standard Crystal Ball
    mean = RooRealVar("mean", "mean", -0.003, -0.1, 0.1)
    sigma = RooRealVar("sigma", "sigma", 0.01, 0., 0.9)
    alpha = RooRealVar("alpha", "alpha", 1.2, 0., 10.)
    n = RooRealVar("n", "n", 1.3, 0., 20.)
    cbpdf = RooCBShape("cbpdf", "cbpdf", x, mean, sigma, alpha, n)

    res = cbpdf.fitTo(rfPtTrackRel, rf.Range("fitran"), rf.Save())

    #log fit results
    ut.log_results(out, ut.log_fit_result(res))

    #generate new distribution according to the fit
    gROOT.LoadMacro("cb_gen.h")
    #Crystal Ball generator, min, max, mean, sigma, alpha, n
    #cbgen = rt.cb_gen(-0.18, 0.05, -0.00226, 0.00908, 1.40165, 1.114)  #  -0.18, 0.05  ptmin, ptmax
    cbgen = rt.cb_gen(-0.5, 0.05, -0.00226, 0.00908, 0.2,
                      2.)  #  -0.18, 0.05  ptmin, ptmax
    hRelGen = ut.prepare_TH1D_n("hRelGen", nbins, ptmin, ptmax)
    ut.set_H1D_col(hRelGen, rt.kBlue)
    #rt.cb_generate_n(cbgen, hRelGen, int(hPtTrackRel.GetEntries()))
    rfRelGen = RooDataHist("rfRelGen", "rfRelGen", RooArgList(x), hRelGen)

    #generate distribution with additional smearing applied
    hRelSmear = ut.prepare_TH1D_n("hRelSmear", nbins, ptmin, ptmax)
    ut.set_H1D_col(hRelSmear, rt.kOrange)
    #tcopy = mctree.CopyTree(strsel)
    #rt.cb_apply_smear(cbgen, mctree, hRelSmear)

    can = ut.box_canvas()
    ut.set_margin_lbtr(gPad, 0.12, 0.1, 0.05, 0.03)

    frame = x.frame(rf.Bins(nbins), rf.Title(""))
    ut.put_frame_yx_tit(frame, ytit, xtit)

    rfPtTrackRel.plotOn(frame, rf.Name("data"))

    #rfRelGen.plotOn(frame, rf.Name("data"))

    cbpdf.plotOn(frame, rf.Precision(1e-6), rf.Name("cbpdf"),
                 rf.LineColor(ccb))

    frame.Draw()

    #hRelGen.Draw("e1same")
    #hRelSmear.Draw("e1same")

    desc = pdesc(frame, 0.2, 0.8, 0.057)
    #x, y, sep
    desc.set_text_size(0.03)

    desc.itemD("#chi^{2}/ndf", frame.chiSquare("cbpdf", "data", 4), -1, ccb)
    desc.prec = 5
    desc.itemR("mean", mean, ccb)
    desc.itemR("#sigma", sigma, ccb)
    desc.itemR("#alpha", alpha, ccb)
    desc.prec = 3
    desc.itemR("#it{n}", n, ccb)
    desc.draw()

    leg = ut.prepare_leg(0.2, 0.82, 0.21, 0.12, 0.03)  # x, y, dx, dy, tsiz
    leg.SetMargin(0.05)
    leg.AddEntry(0, "#bf{%.1f < #it{p}_{T}^{pair} < %.1f GeV}" % (ptlo, pthi),
                 "")
    leg.Draw("same")

    #ut.invert_col(rt.gPad)
    can.SaveAs("01fig.pdf")
Example #13
0
def plot_rec_gen_track_phi():

    #track azimuthal angle phi resolution as ( phi_track_rec - phi_track_gen )/phi_track_gen

    phibin = 0.0001
    phimin = -0.02
    phimax = 0.02

    #ptlo = 0.
    #pthi = 0.9

    fitran = [-0.01, 0.01]

    mmin = 2.8
    mmax = 3.2

    cbw = rt.kBlue

    #output log file
    out = open("out.txt", "w")
    #log fit parameters
    loglist1 = [(x, eval(x))
                for x in ["infile_mc", "phibin", "phimin", "phimax"]]
    loglist2 = [(x, eval(x)) for x in ["fitran", "mmin", "mmax"]]
    strlog = ut.make_log_string(loglist1, loglist2)
    ut.log_results(out, strlog + "\n")

    strsel = "jRecM>{0:.3f} && jRecM<{1:.3f}".format(mmin, mmax)
    #strsel += " && jGenPt>{0:.3f}".format(ptlo)
    #strsel += " && jGenPt<{0:.3f}".format(pthi)

    nbins, phimax = ut.get_nbins(phibin, phimin, phimax)
    hPhiRel = ut.prepare_TH1D_n("hPhiRel", nbins, phimin, phimax)

    ytit = "Events / ({0:.4f})".format(phibin)
    xtit = "(#phi_{rec} - #phi_{gen})/#phi_{gen}"

    mctree.Draw("(jT0phi-jGenP0phi)/jGenP0phi >> hPhiRel",
                strsel)  # positive charge
    mctree.Draw("(jT1phi-jGenP1phi)/jGenP1phi >>+hPhiRel",
                strsel)  # add negative charge

    x = RooRealVar("x", "x", phimin, phimax)
    x.setRange("fitran", fitran[0], fitran[1])
    rfPhiRel = RooDataHist("rfPhiRel", "rfPhiRel", RooArgList(x), hPhiRel)

    #Breit-Wigner pdf
    mean = RooRealVar("mean", "mean", 0., -0.1, 0.1)
    sigma = RooRealVar("sigma", "sigma", 0.01, 0., 0.9)
    bwpdf = RooBreitWigner("bwpdf", "bwpdf", x, mean, sigma)

    res = bwpdf.fitTo(rfPhiRel, rf.Range("fitran"), rf.Save())

    #log fit results
    ut.log_results(out, ut.log_fit_result(res))

    can = ut.box_canvas()
    ut.set_margin_lbtr(gPad, 0.12, 0.1, 0.05, 0.03)

    frame = x.frame(rf.Bins(nbins), rf.Title(""))
    ut.put_frame_yx_tit(frame, ytit, xtit)

    rfPhiRel.plotOn(frame, rf.Name("data"))

    bwpdf.plotOn(frame, rf.Precision(1e-6), rf.Name("bwpdf"))

    frame.Draw()

    desc = pdesc(frame, 0.12, 0.93, 0.057)
    #x, y, sep
    desc.set_text_size(0.03)
    desc.itemD("#chi^{2}/ndf", frame.chiSquare("bwpdf", "data", 2), -1, cbw)
    desc.prec = 2
    desc.fmt = "e"
    desc.itemR("mean", mean, cbw)
    desc.itemR("#sigma", sigma, cbw)

    desc.draw()

    leg = ut.make_uo_leg(hPhiRel, 0.5, 0.8, 0.2, 0.2)
    #leg.Draw("same")

    #print "Entries: ", hPhiRel.GetEntries()

    #ut.invert_col(rt.gPad)
    can.SaveAs("01fig.pdf")
Example #14
0
    #get input
    inp = TFile.Open(basedir + "/" + infile)
    tree = inp.Get("jAllTree")

    gROOT.SetBatch()

    #output log file
    out = open("out.txt", "w")
    #log fit parameters
    loglist1 = [(x, eval(x)) for x in ["infile", "vbin", "vmin", "vmax"]]
    loglist2 = [(x, eval(x)) for x in ["fitran", "binned", "f_4s"]]
    strlog = ut.make_log_string(loglist1, loglist2)
    ut.log_results(out, strlog + "\n")

    #input data
    nbins, vmax = ut.get_nbins(vbin, vmin, vmax)
    z = RooRealVar("jZDCVtxZ", "z", vmin, vmax)
    z.setRange("fitran", fitran[0], fitran[1])
    data = RooDataSet("data", "data", tree, RooArgSet(z))
    hZdc = TH1D("hZdc", "hZdc", nbins, vmin, vmax)
    tree.Draw("jZDCVtxZ >> hZdc")
    dataH = RooDataHist("dataH", "dataH", RooArgList(z), hZdc)

    #fit model
    #middle Gaussian
    m0 = RooRealVar("m0", "m0", 27, vmin, vmax)
    sig0 = RooRealVar("sig0", "sig0", 20, vmin, vmax)
    g0 = RooGaussian("g0", "g0", z, m0, sig0)
    #left Gaussian
    mL = RooRealVar("mL", "mL", -36, vmin, vmax)
    sigL = RooRealVar("sigL", "sigL", 25, vmin, vmax)