Example #1
0
        history = model.fit(train_x,
                            train_y,
                            epochs=EPOCHS,
                            batch_size=BATCH_SIZE,
                            validation_data=(dev_x, dev_y),
                            verbose=1,
                            callbacks=[cp_callback])
        end = time.process_time()
        time_cost = end - start
    # # Visualize the model's training progress using the stats stored in the history object
    hist = pd.DataFrame(history.history)
    hist.to_csv(model_path + MODEL_NAME + '-HISTORY-TRAIN-TEST.csv')
    hist['epoch'] = history.epoch
    # print(hist.tail())
    plot_history(history,
                 model_path + MODEL_NAME + '-MAE-ERRORS-TRAINTEST.png',
                 model_path + MODEL_NAME + '-MSE-ERRORS-TRAINTEST.png')
elif len(files) == 0:  # The current model has not been trained
    if os.path.exists(
            model_path + warm_dir
    ) and WARM_UP:  # Training the model using the trained weights and biases as initialized parameters
        print('WARM UP FROM EPOCH ' + str(INITIAL_EPOCH)
              )  # Warm up from the last epoch of the target model
        prev_time_cost = (pd.read_csv(model_path + warm_dir +
                                      '.csv')['time_cost'])[0]
        warm_path = model_path + warm_dir + '\\cp.ckpt'
        model.load_weights(warm_path)
        if EARLY_STOPING:
            start = time.process_time()
            history = model.fit(train_x,
                                train_y,
Example #2
0
def my_lstm(path,pattern,HU1,DR1,
    HL=1,
    HU2=8,
    DR2=0.0,
    LR=0.007,
    EPS=1000,
    lev=None,
    EARLY_STOPING = True,
    MODEL_ID=None,
    loss='mean_squared_error',
    wavelet=None):
    if wavelet == None and MODEL_ID==None:
        data_path = path + 'data\\'+pattern+'\\'
        model_path = path+'projects\\lstm-models-history\\'+pattern+'\\history\\'
    elif wavelet==None and MODEL_ID!=None:
        data_path = path + 'data\\'+pattern+'\\'
        model_path = path+'projects\\lstm-models-history\\'+pattern+'\\history\\s'+str(MODEL_ID)+'\\'
    elif wavelet!=None and MODEL_ID==None:
        data_path = path + 'data\\'+wavelet+'-'+str(lev)+'\\'+pattern+'\\'
        model_path = path+'projects\\lstm-models-history\\'+wavelet+'-'+str(lev)+'\\'+pattern+'\\history\\'
    elif wavelet!=None and MODEL_ID!=None:
        data_path = path + 'data\\'+wavelet+'-'+str(lev)+'\\'+pattern+'\\'
        model_path = path+'projects\\lstm-models-history\\'+wavelet+'-'+str(lev)+'\\'+pattern+'\\history\\s'+str(MODEL_ID)+'\\'

    # 1.Import the sampled normalized data set from disk
    if MODEL_ID==None:
        train = pd.read_csv(data_path+'minmax_unsample_train.csv')
        dev = pd.read_csv(data_path+'minmax_unsample_dev.csv')
        test = pd.read_csv(data_path+'minmax_unsample_test.csv')
    else:
        train = pd.read_csv(data_path+'minmax_unsample_train_s'+str(MODEL_ID)+'.csv')
        dev = pd.read_csv(data_path+'minmax_unsample_dev_s'+str(MODEL_ID)+'.csv')
        test = pd.read_csv(data_path+'minmax_unsample_test_s'+str(MODEL_ID)+'.csv')

    # Split features from labels
    train_x = train
    train_y = train.pop('Y')
    train_y = train_y.values
    dev_x = dev
    dev_y = dev.pop('Y')
    dev_y = dev_y.values
    test_x = test
    test_y = test.pop('Y')
    test_y = test_y.values
    # reshape the input features for LSTM
    train_x = (train_x.values).reshape(train_x.shape[0],1,train_x.shape[1])
    dev_x = (dev_x.values).reshape(dev_x.shape[0],1,dev_x.shape[1])
    test_x = (test_x.values).reshape(test_x.shape[0],1,test_x.shape[1])

    RE_TRAIN = False
    WARM_UP = False
    # EARLY_STOPING = True
    INITIAL_EPOCH = 6000
    # For initialize weights and bias
    SEED=1
    # set hyper-parameters
    # EPS=1000     #epochs number
    #########--1--###########
    # LR=0.007     #learnin rate 0.0001, 0.0003, 0.0007, 0.001, 0.003, 0.007,0.01, 0.03 0.1

    #########--2--############
    #HU1 = 32     #hidden units for hidden layer 1: [8,16,24,32]
    BS = 512    #batch size

    #########--3--###########
    # HL = 1      #hidden layers
    # HU2 = 16    #hidden units for hidden layer 2
    DC=0.000  #decay rate of learning rate
    #########--4--###########
    #DR1=0.7  #dropout rate for hidden layer 1:[0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9]
    # DR2=0.0      #dropout rate for hidden layer 2
    # 2.Build LSTM model with keras
    # set the hyper-parameters
    LEARNING_RATE=LR
    EPOCHS = EPS
    BATCH_SIZE = BS
    if HL==2:
        HIDDEN_UNITS = [HU1,HU2]
        DROP_RATE = [DR1,DR2]
    else:
        HIDDEN_UNITS = [HU1]
        DROP_RATE = [DR1]

    DECAY_RATE = DC
    if MODEL_ID==None:
        MODEL_NAME = 'LSTM-LR['+str(LEARNING_RATE)+']-HU'+str(HIDDEN_UNITS)+'-EPS['+str(EPOCHS)+']-BS['+str(BATCH_SIZE)+']-DR'+str(DROP_RATE)+'-DC['+str(DECAY_RATE)+']-SEED['+str(SEED)+']'
    else:
        MODEL_NAME = 'LSTM-S'+str(MODEL_ID)+'-LR['+str(LEARNING_RATE)+']-HU'+str(HIDDEN_UNITS)+'-EPS['+str(EPOCHS)+']-BS['+str(BATCH_SIZE)+']-DR'+str(DROP_RATE)+'-DC['+str(DECAY_RATE)+']-SEED['+str(SEED)+']'
    # RESUME_TRAINING = True
    def build_model():
        if HL==2:
            model = keras.Sequential(
            [
                layers.LSTM(HIDDEN_UNITS[0],activation=tf.nn.relu,return_sequences=True,input_shape=(train_x.shape[1],train_x.shape[2])),
                layers.Dropout(DROP_RATE[0], noise_shape=None, seed=None),
                layers.LSTM(HIDDEN_UNITS[1],activation=tf.nn.relu,return_sequences=False), # first hidden layer if hasnext hidden layer
                layers.Dropout(DROP_RATE[1], noise_shape=None, seed=None),
                # layers.LSTM(20,activation=tf.nn.relu,return_sequence=True),
                layers.Dense(1)
            ]
        )
        else:
            model = keras.Sequential(
                [
                    layers.LSTM(HIDDEN_UNITS[0],activation=tf.nn.relu,input_shape=(train_x.shape[1],train_x.shape[2])),
                    layers.Dropout(DROP_RATE[0], noise_shape=None, seed=None),
                    # layers.LSTM(HIDDEN_UNITS1,activation=tf.nn.relu,return_sequences=True,input_shape=(train_x.shape[1],train_x.shape[2])), # first hidden layer if hasnext hidden layer
                    # layers.LSTM(20,activation=tf.nn.relu,return_sequence=True),
                    layers.Dense(1)
                ]
            )
        optimizer = keras.optimizers.Adam(LEARNING_RATE,
        decay=DECAY_RATE
        )
        if loss=='mean_squared_error':
            print('Loss Function:mean_square_error')
            model.compile(
                loss='mean_squared_error',
                optimizer=optimizer,
                metrics=['mean_absolute_error','mean_squared_error'])
        elif loss=='custom_loss':
            print('Custom Loss Function')
            model.compile(
                loss=custom_loss,
                optimizer=optimizer,
                metrics=['mean_absolute_error','mean_squared_error',custom_loss])
        return model
    # set model's parameters restore path
    cp_path = model_path+MODEL_NAME+'\\'
    if not os.path.exists(cp_path):
        os.makedirs(cp_path)
    checkpoint_path = model_path+MODEL_NAME+'\\cp.h5' #restore only the latest checkpoint after every update
    # checkpoint_path = model_path+'cp-{epoch:04d}.ckpt' #restore the checkpoint every period=x epoch
    checkpoint_dir = os.path.dirname(checkpoint_path)
    print('checkpoint dir:{}'.format(checkpoint_dir))
    cp_callback = keras.callbacks.ModelCheckpoint(checkpoint_path,save_best_only=True,mode='min',save_weights_only=True,verbose=1)
    model = build_model()
    model.summary() #print a simple description for the model
    """
    # Evaluate before training or load trained weights and biases
    loss, mae, mse = model.evaluate(test_x, test_y, verbose=1)
    # Try the model with initial weights and biases
    example_batch = train_x[:10]
    example_result = model.predict(example_batch)
    print(example_result)
    """
    # 3.Train the model
    # Display training progress by printing a single dot for each completed epoch
    class PrintDot(keras.callbacks.Callback):
      def on_epoch_end(self, epoch, logs):
        if epoch % 100 == 0: print('')
        print('.', end='')
    files = os.listdir(checkpoint_dir)

    from tensorflow.keras.callbacks import ReduceLROnPlateau,EarlyStopping
    # reduce_lr = ReduceLROnPlateau(monitor='val_loss', patience=10, mode='auto')
    reduce_lr = ReduceLROnPlateau(monitor='val_loss',min_lr=0.00001,factor=0.2, verbose=1,patience=10, mode='min')
    early_stopping = EarlyStopping(monitor='val_loss', mode='min',verbose=1,patience=100,restore_best_weights=True)

    if MODEL_ID==None:
        warm_dir = 'LSTM-LR['+str(LEARNING_RATE)+']-HU'+str(HIDDEN_UNITS)+'-EPS['+str(INITIAL_EPOCH)+']-BS['+str(BATCH_SIZE)+']-DR'+str(DROP_RATE)+'-DC['+str(DECAY_RATE)+']-SEED['+str(SEED)+']'
    else:
        warm_dir = 'LSTM-S'+str(MODEL_ID)+'-LR['+str(LEARNING_RATE)+']-HU'+str(HIDDEN_UNITS)+'-EPS['+str(INITIAL_EPOCH)+']-BS['+str(BATCH_SIZE)+']-DR'+str(DROP_RATE)+'-DC['+str(DECAY_RATE)+']-SEED['+str(SEED)+']'
    print(os.path.exists(model_path+warm_dir))
    if  RE_TRAIN: 
        print('retrain the model')
        if EARLY_STOPING:
            history2 = model.fit(train_x,train_y,epochs=EPOCHS,batch_size=BATCH_SIZE ,validation_data=(dev_x,dev_y),verbose=1,
            callbacks=[
                cp_callback,
                early_stopping,
            ])
        else:
            history2 = model.fit(train_x,train_y,epochs=EPOCHS,batch_size=BATCH_SIZE ,validation_data=(dev_x,dev_y),verbose=1,callbacks=[cp_callback])
        hist2 = pd.DataFrame(history2.history)
        hist2.to_csv(model_path+MODEL_NAME+'-HISTORY-TRAIN-TEST.csv')
        hist2['epoch']=history2.epoch
        # print(hist.tail())
        plot_history(history2,model_path+MODEL_NAME+'-MAE-ERRORS-TRAINTEST.png',model_path+MODEL_NAME+'-MSE-ERRORS-TRAINTEST.png')
    elif len(files)==0:
        if os.path.exists(model_path+warm_dir) and WARM_UP:
            print('WARM UP FROM EPOCH '+str(INITIAL_EPOCH))
            warm_path=model_path+warm_dir+'\\cp.ckpt'
            model.load_weights(warm_path)
            if EARLY_STOPING:
                history2 = model.fit(train_x,train_y,initial_epoch=INITIAL_EPOCH,epochs=EPOCHS,batch_size=BATCH_SIZE ,validation_data=(dev_x,dev_y),verbose=1,
                callbacks=[
                    cp_callback,
                    early_stopping,
                    ])
            else:
                history2 = model.fit(train_x,train_y,initial_epoch=INITIAL_EPOCH,epochs=EPOCHS,batch_size=BATCH_SIZE ,validation_data=(dev_x,dev_y),verbose=1,callbacks=[cp_callback,])
            hist2 = pd.DataFrame(history2.history)
            hist2.to_csv(model_path+MODEL_NAME+'-HISTORY-TRAIN-TEST.csv')
            hist2['epoch']=history2.epoch
            # print(hist.tail())
            plot_history(history2,model_path+MODEL_NAME+'-MAE-ERRORS-TRAINTEST.png',model_path+MODEL_NAME+'-MSE-ERRORS-TRAINTEST.png')
        else:
            print('new train')
            if EARLY_STOPING:
                history2 = model.fit(train_x,train_y,epochs=EPOCHS,batch_size=BATCH_SIZE ,validation_data=(dev_x,dev_y),verbose=1,callbacks=[
                    cp_callback,
                    early_stopping,
                    ])
            else:
                history2 = model.fit(train_x,train_y,epochs=EPOCHS,batch_size=BATCH_SIZE ,validation_data=(dev_x,dev_y),verbose=1,callbacks=[cp_callback,])
            hist2 = pd.DataFrame(history2.history)
            hist2.to_csv(model_path+MODEL_NAME+'-HISTORY-TRAIN-TEST.csv')
            hist2['epoch']=history2.epoch
            # print(hist.tail())
            plot_history(history2,model_path+MODEL_NAME+'-MAE-ERRORS-TRAINTEST.png',model_path+MODEL_NAME+'-MSE-ERRORS-TRAINTEST.png')
    else:
        print('#'*10+'Already Trained')
        model.load_weights(checkpoint_path)


    model.load_weights(checkpoint_path)

        # loss, mae, mse = model.evaluate(test_x, test_y, verbose=1)
    """
    # Evaluate after training or load trained weights and biases
    loss, mae, mse = model.evaluate(test_x, test_y, verbose=1)
    print("Testing set Mean Abs Error: {:5.2f} ".format(mae))
    """
    # 4. Predict the model
    # load the unsample data
    train_predictions = model.predict(train_x).flatten()
    dev_predictions = model.predict(dev_x).flatten()
    test_predictions = model.predict(test_x).flatten()
    # plt.figure()
    # plt.plot(train_y,c='b')
    # plt.plot(train_predictions,c='r')
    # plt.show()
    # renormized the predictions and labels
    # load the normalized traindev indicators
    if MODEL_ID==None:
        norm = pd.read_csv(data_path+'norm_id.csv')
        sMax = norm['series_max'][norm.shape[0]-1]
        sMin = norm['series_min'][norm.shape[0]-1]
    else:
        norm = pd.read_csv(data_path+'norm_id_s'+str(MODEL_ID)+'.csv')
        sMax = norm['series_max'][norm.shape[0]-1]
        sMin = norm['series_min'][norm.shape[0]-1]

    print('Series min:{}'.format(sMin))
    print('Series max:{}'.format(sMax))

    train_y = np.multiply(train_y + 1,sMax - sMin) / 2 + sMin
    train_predictions = np.multiply(train_predictions + 1,sMax - sMin) / 2 + sMin
    dev_y = np.multiply(dev_y + 1,sMax - sMin) / 2 + sMin
    dev_predictions = np.multiply(dev_predictions + 1,sMax - sMin) / 2 + sMin
    test_y = np.multiply(test_y + 1,sMax - sMin) / 2 + sMin
    test_predictions = np.multiply(test_predictions + 1,sMax - sMin) / 2 + sMin

    print("pattern.find('multi')={}".format(pattern.find('multi')))
    print("pattern.find('one')={}".format(pattern.find('one')))

    if pattern.find('one')>=0:
        print('decomposition ensemble model!!!!!!!!!!!!!!!!!!!!!!!')
        train_predictions[train_predictions<0.0]=0.0
        dev_predictions[dev_predictions<0.0]=0.0
        test_predictions[test_predictions<0.0]=0.0
    elif pattern.find('one')<0 and pattern.find('multi')<0:
        print('monoscale model$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$')
        train_predictions[train_predictions<0.0]=0.0
        dev_predictions[dev_predictions<0.0]=0.0
        test_predictions[test_predictions<0.0]=0.0


    dum_pred_results(
        path = model_path+MODEL_NAME+'.csv',
        train_y = train_y,
        train_predictions=train_predictions,
        dev_y = dev_y,
        dev_predictions = dev_predictions,
        test_y = test_y,
        test_predictions = test_predictions)

    plot_rela_pred(train_y,train_predictions,fig_savepath=model_path + MODEL_NAME + '-TRAIN-PRED.png')
    plot_rela_pred(dev_y,dev_predictions,fig_savepath=model_path + MODEL_NAME + "-DEV-PRED.png")
    plot_rela_pred(test_y,test_predictions,fig_savepath=model_path + MODEL_NAME + "-TEST-PRED.png")
    plot_error_distribution(test_predictions,test_y,model_path+MODEL_NAME+'-ERROR-DSTRI.png')
    plt.close('all')
    tf.keras.backend.clear_session()