Example #1
0
def process_dataset(dataset, n_clusters, pca_enabled=False):
    X = np.load("./data/" + dataset + '.npy')
    if pca_enabled:
        pca = utils.load_model(dataset + '_pca')
        X = pca.transform(utils.flat(X)).reshape(X.shape[0], X.shape[1], -1)
    segments = segmentation(X, n_clusters)
    np.save("./results/" + dataset + "_segments.npy", segments)
    color_segments = color_true_map(segments, back_color=[1, 1, 1])
    save_image(color_segments, dataset + "_segments")
    print("Segments:", len(np.bincount(segments.reshape(-1))) - 1)
Example #2
0
def process_dataset(dataset, colors):
    y = np.load("./data/" + dataset + '_labels.npy')
    pred = np.load("./data/" + dataset + '_clasification.npy')
    segments = np.load("./results/" + dataset + '_segments.npy')
    test_mask = np.load("./data/" + dataset + '_test_mask.npy').reshape(
        y.shape)
    sc_pred = classify_segments(pred, segments)
    sc_score = utils.balanced_score(y[test_mask], sc_pred[test_mask])
    sc_cm = utils.confusion_matrix(y[test_mask], sc_pred[test_mask])
    utils.save_json({"sc": sc_score}, dataset + "_sc_score")
    utils.save_csv(sc_cm, dataset + "_sc_cm")
    color_map = color_true_map(sc_pred, labels_colors=colors)
    save_image(color_map, dataset + "_sc_clasification")
Example #3
0
def process_dataset(dataset):
    X_img = np.load("./data/" + dataset + '.npy')
    segments = np.load("./results/" + dataset + '_segments.npy')
    seg_labels = range(len(np.bincount(segments.reshape(-1))))
    n_endmembers = error_curve(dataset, X_img, segments, seg_labels)

    _, endmembers, abundances = unmix_segments(X_img, segments, seg_labels,
                                               n_endmembers)
    plot_endmembers(dataset + "_seg_endmember", endmembers)
    np.save("./results/" + dataset + "_seg_endmembers.npy", endmembers)
    np.save("./results/" + dataset + "_seg_abundances.npy", abundances)
    abun_map = np.empty((X_img.shape[0], X_img.shape[1], n_endmembers))
    for seg in seg_labels:
        abun_map[segments == seg, :] = abundances[seg, :]
    for i in range(n_endmembers):
        abun_color = color_abundance_map(abun_map[:, :, i], [255, 255, 255])
        save_image(abun_color, dataset + "_seg_abundances_" + str(i))
Example #4
0
def process_dataset(dataset, colors):
    y = np.load("./data/" + dataset + '_labels.npy')
    pred = np.load("./data/" + dataset + '_clasification.npy')
    test_mask = np.load("./data/" + dataset + '_test_mask.npy').reshape(
        y.shape)
    mv_sizes = [3, 5, 9]
    mv_pred = [majority_vote(pred, size) for size in mv_sizes]
    mv_scores = [
        utils.balanced_score(y[test_mask], p[test_mask]) for p in mv_pred
    ]
    mv_cm = [
        utils.confusion_matrix(y[test_mask], p[test_mask]) for p in mv_pred
    ]
    keys = ["_mv_{}".format(size) for size in mv_sizes]
    utils.save_json(dict(zip(keys, mv_scores)), dataset + "_mv_scores")
    for i in range(len(mv_sizes)):
        utils.save_csv(mv_cm[i], dataset + keys[i] + "_cm")
        color_map = color_true_map(mv_pred[i], labels_colors=colors)
        save_image(color_map, dataset + keys[i] + "_clasification")
Example #5
0
def generate_work_data(dataset, labels, colors, parameters, pca_enabled=False):
    X_img = np.load('./data/' + dataset + '.npy')
    y_img = np.load('./data/' + dataset + '_labels.npy')
    save_image(color_true_map(y_img, labels_colors=colors),
               dataset + "_labels")

    X = utils.flat(X_img)
    y = utils.flat(y_img)
    train_ratio, val_ratio = 0.1, 0.1
    test_ratio = 1 - (train_ratio + val_ratio)
    tv_mask, test_mask = utils.balanced_train_test_mask(
        y, np.isin(y, labels), test_ratio)
    train_mask, val_mask = utils.balanced_train_test_mask(
        y, tv_mask, val_ratio / (val_ratio + train_ratio))

    np.save("./data/" + dataset + "_train_mask.npy", train_mask)
    np.save("./data/" + dataset + "_val_mask.npy", val_mask)
    np.save("./data/" + dataset + "_test_mask.npy", test_mask)

    if pca_enabled:
        pca = utils.pca(X[tv_mask, :], 0.99)
        utils.save_model(pca, dataset + '_pca')
        train = pca.transform(X[train_mask, :])
        test = pca.transform(X[test_mask])
        flat = pca.transform(X)
    else:
        train = X[train_mask, :]
        test = X[test_mask, :]
        flat = X

    svc = utils.svc(train, y[train_mask], parameters["C"], parameters["gamma"])
    utils.save_model(svc, dataset + '_svc')
    test_pred = svc.predict(test)
    np.save("./data/" + dataset + "_test_pred.npy", test_pred)
    classification = svc.predict(flat).reshape(y_img.shape).astype(np.uint8)
    np.save("./data/" + dataset + "_clasification.npy", classification)
    save_image(color_true_map(classification, labels_colors=colors),
               dataset + "_clasification")

    score = utils.balanced_score(y[test_mask], test_pred)
    utils.save_json({"original": score}, dataset + "_original_score")
    print("Test Score:", score)