import matplotlib.pyplot as pl import numpy as np import os import pyx from helpers import original_data_path from plotfuncs import create_fig from matrix_plot import matrix_plot, rate_histogram_plot from multiarea_model import MultiAreaModel LOAD_ORIGINAL_DATA = True scale = 1. width = 7.0866 n_horz_panels = 3. n_vert_panels = 3. panel_factory = create_fig( 1, scale, width, n_horz_panels, n_vert_panels, voffset=0.25, hoffset=0.1, squeeze=0.1) axes = {} axes['A'] = panel_factory.new_panel(0, 1, r'A', label_position=-0.25) axes['A2'] = panel_factory.new_empty_panel(0, 2, r'', label_position=-0.25) axes['B'] = panel_factory.new_panel(1, 1, r'B', label_position=-0.25) axes['B2'] = panel_factory.new_empty_panel(1, 2, r'', label_position=-0.25) axes['C'] = panel_factory.new_panel(2, 1, r'C', label_position=-0.25) axes['C2'] = panel_factory.new_empty_panel(2, 2, r'', label_position=-0.25) # Simulation if LOAD_ORIGINAL_DATA: data = {} data_labels = [('533d73357fbe99f6178029e6054b571b485f40f6'),
architecture_array = np.zeros(len(area_list)) log_density_array = np.zeros(len(area_list)) for i, area in enumerate(area_list): architecture_array[i] = architecture_completed[area] log_density_array[i] = np.log10(neuron_densities[area]['overall']) # ################################################################################ scale = 1.0 width = 7.5 n_horz_panels = 3. n_vert_panels = 1. panel_factory = create_fig(1, scale, width, n_horz_panels, n_vert_panels, hoffset=0.06, voffset=0.19, height_sup=.2) axes = {} axes['A'] = panel_factory.new_panel(0, 0, r'A', label_position=(-0.2, 1.2)) axes['B'] = panel_factory.new_panel(1, 0, r'B', label_position=(-0.2, 1.2)) axes['C'] = panel_factory.new_panel(2, 0, r'C', label_position=(-0.2, 1.2)) labels = ['A', 'B', 'C'] for label in labels: axes[label].spines['right'].set_color('none') axes[label].spines['top'].set_color('none') axes[label].yaxis.set_ticks_position("left") axes[label].xaxis.set_ticks_position("bottom")