Example #1
0
def update_graph(cleaned_data):
    df_t = pd.read_json(cleaned_data, orient='split')
    print("lenght of df is ", len(df_t))
    if (len(df_t) == 0):
        return {
            'data': [
                go.Table(header=dict(values=['Message']),
                         cells=dict(values=[['No data']]))
            ]
        }
    y1 = list(df_t['Total Actual'])
    y2 = list(df_t['Total Target'])
    indname = list(df_t['Indicator'])
    return {
        'data': [
            go.Bar(x=indname,
                   y=y1,
                   name='achieved',
                   marker=go.Marker(color='#07d7a7')),
            go.Bar(x=indname,
                   y=y2,
                   name='target',
                   marker=go.Marker(color='#ff9f00'))
        ]
    }
Example #2
0
def getGlobalDataByDateRange(df, country, start=1750, end=2015):

    maxAllowed = df[df['dt'] == 1850]['LandAverageTemperature'] + 2

    y = df[(df['dt'] > start) & (df['dt'] <= end)]['LandAverageTemperature']
    x = df[(df['dt'] > start) & (df['dt'] <= end)]['dt']

    xi = arange(0, len(x))

    # Generated linear fit
    slope, intercept, _, _, _ = stats.linregress(xi, y)

    line = slope * xi + intercept

    trace1 = go.Scatter(x=x,
                        y=y,
                        mode='markers',
                        marker=go.Marker(color='rgb(255, 204, 153)'),
                        name='Temperature scatter')

    trace2 = go.Scatter(x=x,
                        y=line,
                        mode='lines',
                        marker=go.Marker(color='rgb(255, 153, 51)'),
                        name='Fitted line')

    traceMax = go.Scatter(x=x,
                          y=[maxAllowed[0]] * len(x),
                          line=dict(color=('rgb(205, 12, 24)'),
                                    width=2,
                                    dash='dot'),
                          name='Maximum allowed temperature')

    return [trace1, trace2, traceMax]
Example #3
0
def callback_drug_reports_at_ages_bars(value):

    series = (data.query('drug_concept_name == @value').groupby(
        ['age_cat']).apply(lambda x: x.shape[0]))
    x = series.index.tolist()
    y = series.values
    y_norm = np.round((series.values / series.sum()) * 100, 0)

    drug_trace = go.Bar(x=x,
                        y=y_norm,
                        name='{}'.format(value),
                        text=['{} reports'.format(i) for i in y],
                        marker=go.Marker(color='rgb(55, 83, 109)'))

    all_trace = go.Bar(
        x=all_age_cat_counts_x,
        y=all_age_cat_counts_y_norm,
        name='All drugs',
        text=['{} reports'.format(i) for i in all_age_cat_counts_y],
        marker=go.Marker(color='rgb(180,180,180)'))
    return {
        'data': [all_trace, drug_trace],
        'layout':
        go.Layout(title='Patients taking {} at different age intervals'.format(
            value),
                  showlegend=True,
                  yaxis=dict(title="Percentage of reports", type='-'),
                  xaxis=dict(title="Age category"),
                  legend=go.Legend(x=0, y=1.0),
                  margin=go.Margin(l=40, r=20, t=40, b=100))
    }
Example #4
0
def line_per_odper_fitting_fuction(dataframe, function, filename):
    """line graph for long tail analysis. X: percentage Y: od percentage"""

    # calculate new x's and y's
    x_new = np.linspace(0.5, 1, 50)
    y_new = function(x_new)

    data_origin = go.Scatter(
        x=dataframe['percentage'],  # assign x as the dataframe column 'x'
        y=dataframe['od_needed'],
        mode='markers',
        marker=go.Marker(color='rgb(255, 127, 14)'),
        name='Data')

    data_fitting = go.Scatter(x=x_new,
                              y=y_new,
                              mode='lines',
                              marker=go.Marker(color='rgb(31, 119, 180)'),
                              name='Fit')

    data = [data_origin, data_fitting]

    layout = go.Layout(
        title='Coverage and OD Relationship with Polynomial Fit in Python',
        plot_bgcolor='rgb(229, 229, 229)',
        xaxis=go.XAxis(zerolinecolor='rgb(255,255,255)',
                       gridcolor='rgb(255,255,255)'),
        yaxis=go.YAxis(zerolinecolor='rgb(255,255,255)',
                       gridcolor='rgb(255,255,255)'))

    fig = go.Figure(data=data, layout=layout)
    py.plot(fig, filename=filename)
Example #5
0
def _update_graph(map_style, region):
    dff = dataframe
    radius_multiplier = {'inner': 1.5, 'outer': 3}

    layout = go.Layout(
        title=metadata['title'],
        autosize=True,
        hovermode='closest',
        height=750,
        font=dict(family=theme['font-family']),
        margin=go.Margin(l=0, r=0, t=45, b=10),
        mapbox=dict(
            accesstoken=mapbox_access_token,
            bearing=0,
            center=dict(
                lat=regions[region]['lat'],
                lon=regions[region]['lon'],
            ),
            pitch=0,
            zoom=regions[region]['zoom'],
            style=map_style,
        ),
    )

    data = go.Data([
        # outer circles represent magnitude
        go.Scattermapbox(
            lat=dff['Latitude'],
            lon=dff['Longitude'],
            mode='markers',
            marker=go.Marker(
                size=dff['Magnitude'] * radius_multiplier['outer'],
                colorscale=colorscale_magnitude,
                color=dff['Magnitude'],
                opacity=1,
            ),
            text=dff['Text'],
            # hoverinfo='text',
            showlegend=False,
        ),
        # inner circles represent depth
        go.Scattermapbox(
            lat=dff['Latitude'],
            lon=dff['Longitude'],
            mode='markers',
            marker=go.Marker(
                size=dff['Magnitude'] * radius_multiplier['inner'],
                colorscale=colorscale_depth,
                color=dff['Depth'],
                opacity=1,
            ),
            # hovering behavior is already handled by outer circles
            hoverinfo='skip',
            showlegend=False
        ),
    ])

    figure = go.Figure(data=data, layout=layout)
    return figure
Example #6
0
def createFigure(filename, isAutoOpen=True, isUploadToServer=False):
    # ------------Custom Candlestick Colors------------
    # Make increasing ohlc sticks and customize their color and name
    opens = [datarow.open for datarow in dataRows]
    highs = [datarow.high for datarow in dataRows]
    lows = [datarow.low for datarow in dataRows]
    closes = [datarow.close for datarow in dataRows]

    fig_increasing = FigureFactory.create_candlestick(
        opens,
        highs,
        lows,
        closes,
        dates=datetime_xAxis,
        direction='increasing',
        marker=go.Marker(color='rgb(61, 153, 112)'),
        line=go.Line(color='rgb(61, 153, 112)'))

    # Make decreasing ohlc sticks and customize their color and name
    fig_decreasing = FigureFactory.create_candlestick(
        opens,
        highs,
        lows,
        closes,
        dates=datetime_xAxis,
        direction='decreasing',
        marker=go.Marker(color='rgb(255, 65, 54)'),
        line=go.Line(color='rgb(255, 65, 54)'))

    # Initialize the figure
    fig = fig_increasing
    fig['data'].extend(fig_decreasing['data'])

    # ------------Add extensions------------
    for index, extensionList in enumerate(extensionLists):
        addLineExtension(fig, [data[0] for data in extensionList],
                         [data[1]
                          for data in extensionList], extensionNames[index],
                         extensionLineTypes[index], extensionColors[index])

    # ------------Update layout And Draw the chart------------
    filename = chartTitle
    fig['layout'].update(
        title=filename,
        xaxis=dict(ticktext=[datarow.date for datarow in dataRows],
                   tickvals=datetime_xAxis,
                   showticklabels=False,
                   showgrid=True,
                   showline=True),
    )

    plotly.offline.plot(fig, filename=filename + '.html', auto_open=isAutoOpen)
    print "----------The chart has been generated----------\n"
Example #7
0
def update_plot(n):
    if n < 182:
        x = l_df['index']
        y = l_df['Count']

        x = np.array(x)
        y = np.array(y)
        x = x[:n]
        y = y[:n]

        if (n - 1) % 12 == 0:
            t_val.append(n)
            t_lab.append(l_df['YEAR'][n])
        # calculate polynomial
        z = np.polyfit(x, y, 3)
        f = np.poly1d(z)

        # calculate new x's and y's
        x_new = np.linspace(x[0], x[-1], len(x) * 10)
        y_new = f(x_new)

        # Creating the dataset, and generating the plot
        trace1 = go.Scatter(x=x,
                            y=y,
                            mode='markers',
                            marker=go.Marker(color='rgb(255, 127, 14)'),
                            name='Data')

        trace2 = go.Scatter(x=x_new,
                            y=y_new,
                            mode='lines',
                            marker=go.Marker(color='rgb(31, 119, 180)'),
                            name='Fit')

        layout = go.Layout(title='Overall Crime Trend in Vancouver',
                           titlefont=dict(size=22),
                           plot_bgcolor='rgb(248, 249, 247)',
                           xaxis=go.XAxis(zerolinecolor='rgb(255,255,255)',
                                          gridcolor='rgb(255,255,255)',
                                          title='Time',
                                          titlefont=dict(size=16),
                                          tickvals=t_val,
                                          ticktext=t_lab,
                                          tickfont=dict(size=14,
                                                        color='blue')),
                           yaxis=go.YAxis(zerolinecolor='rgb(255,255,255)',
                                          gridcolor='rgb(255,255,255)',
                                          title='Crime Counts',
                                          titlefont=dict(size=16)))

        data = [trace1, trace2]
        return {'data': data, 'layout': layout}
Example #8
0
def display_map(coordinates_for_map, mapbox_token):

    job_locations = gr.Data([
        gr.Scattermapbox(lat=coordinates_for_map.latitude,
                         lon=coordinates_for_map.longitude,
                         mode='markers',
                         marker=gr.Marker(size=12,
                                          color='rgb(24, 108, 168)',
                                          opacity=0.7),
                         text=coordinates_for_map['info'] +
                         '<br>Jobs available in this area: ' +
                         coordinates_for_map['JobCount'],
                         hoverinfo='text')
    ])

    map_layout = gr.Layout(title='Jobs in the MA/RI Area',
                           autosize=True,
                           hovermode='closest',
                           showlegend=False,
                           mapbox=dict(accesstoken=mapbox_token,
                                       bearing=0,
                                       center=dict(lat=42.4072, lon=-71.3824),
                                       pitch=10,
                                       zoom=7,
                                       style='light'))

    coordinates_for_map = dict(data=job_locations, layout=map_layout)
    pl.plot(coordinates_for_map, filename='stackoverflow_jobs_map.html')
Example #9
0
def update_figure(opt):

    xi = df1[opt]
    y = df1['Salary']
    slope, intercept, r_value, p_value, std_err = stats.linregress(xi, y)
    line = slope * xi + intercept

    plot1 = go.Scatter(x=df1[opt],
                       y=df1['Salary'],
                       mode='markers',
                       line=dict(width=2, color='rgb(229, 151, 50)'),
                       name='Actual Distribution of "{}"'.format(opt))

    plot2 = go.Scatter(x=df1[opt],
                       y=line,
                       mode='lines',
                       marker=go.Marker(color='rgb(31, 119, 180)'),
                       name='Salary')

    layout = go.Layout(title='Regression Analysis Graph',
                       hovermode='closest',
                       xaxis={'title': 'Age'})

    fig = go.Figure(data=[plot1, plot2], layout=layout)
    return fig
Example #10
0
 def pcaWiki(self,file):
     self.formDataPCA(file)           
     X_std = StandardScaler().fit_transform(self.X)
     sklearn_pca = sklearnPCA(n_components=2)
     Y_sklearn = sklearn_pca.fit_transform(X_std)
     traces = []
 
     for name in self.names:
         trace = go.Scatter(
             x=Y_sklearn[self.y==name,0],
             y=Y_sklearn[self.y==name,1],
             mode='markers',
             name=name,
             marker=go.Marker(
                 size=12,
                 line=go.Line(
                     color='rgba(217, 217, 217, 0.14)',
                     width=0.5),
                 opacity=0.8))
         traces.append(trace)
     data = go.Data(traces)
     layout = go.Layout(xaxis=go.XAxis(title='PC1', showline=False),
                     yaxis=go.YAxis(title='PC2', showline=False))
     fig = go.Figure(data=data, layout=layout)
     if (self.outputType == 'file'):
         print(py.plot(fig,filename='pca')) 
     else:
         return (py.plot(fig,include_plotlyjs='False',output_type='div')) 
def getGlobalDataByDateRange(co2, start = 1960, end = 2016):
    x = co2[(co2['Year'] > start) & (co2['Year'] <= end)]['Year']
    
    y_co2 = co2[(co2['Year'] > start) & (co2['Year'] <= end)]['Global']

    co2goal = float((co2[co2['Year'] == 1990]['Global']) / 2)

    traceCO2 = go.Scatter(
                        x=x,
                        y=co2['Global'],
                        mode='lines',
                        marker=go.Marker(color='rgb(255, 153, 51)'),
                        name='CO₂ emmission'
                        )

    lineCO2 = go.Scatter(
                        x=x,
                        y=[co2goal] * len(x),
                        line = dict(
                            color = ('rgb(205, 12, 24)'),
                            width = 2,
                            dash = 'dot'),
                        name='CO₂ Goal'
                        )


    return [traceCO2, lineCO2]
Example #12
0
def line_trace_course_fr_diff(course_name,
                              colour,
                              semester=None,
                              dash_type=None,
                              showlegend=True):
    qry = qry_location_diff_history(course_name)
    df1 = db_extract_query_to_dataframe(qry,
                                        postgres_cur,
                                        print_messages=False)
    if semester == 1:
        df1 = df1.loc[df1['semester'] == 1]
    elif semester == 2:
        df1 = df1.loc[df1['semester'] == 2]

    x = [i - 0.5 for i in range(1, 7)]

    # Create Semester 1 trace (solid)
    trace = go.Scatter(
        x=x,
        y=df1['fr_diff'].tolist(),
        name='<span style="color: {1}"> {0} </span>'.format(
            course_name, colour),
        text=None,
        textfont={
            'size': 14,
            'color': colour
        },
        line=go.Line(width=3, color=colour, dash=dash_type),
        marker=go.Marker(color=colour, size=10, symbol='diamond'),
        connectgaps=False,
        mode='markers',
        showlegend=showlegend,
        textposition='bottom right',
    )
    return trace
def spain_corruption_evolution():
    spain_corruption_filter_data = spain_corruption[
        (spain_corruption['year'] >= 2000)
        & (spain_corruption['year'] <= 2011)]
    yvalues = [
        records[1] for records in spain_corruption_filter_data.groupby(
            ['year']).count().to_records()
    ]
    xvalues = [
        records[0] for records in spain_corruption_filter_data.groupby(
            ['year']).count().to_records()
    ]
    return dcc.Graph(figure=go.Figure(data=[
        go.Bar(
            x=xvalues,
            y=yvalues,
            marker=go.Marker(color='rgb(55, 83, 109)'),
        )
    ],
                                      layout=go.Layout(
                                          title='Corruption Cases per Year',
                                          showlegend=False,
                                          margin=go.Margin(l=40,
                                                           r=0,
                                                           t=40,
                                                           b=30))),
                     style={'height': 300},
                     id='my-graph')
Example #14
0
 def pca(self,winSize):
     data = np.zeros((len(self.data),len(self.data['FUNC'][winSize])))
     i=0
     for dEl in sorted(self.data):
         self.data[dEl][winSize] = normalizeMaxMin(self.data[dEl][winSize])
         data[i] = self.data[dEl][winSize]
         i+=1
         
     X_std = StandardScaler().fit_transform(np.transpose(data))
     sklearn_pca = sklearnPCA(n_components=2)
     Y_sklearn = sklearn_pca.fit_transform(X_std)
     traces = []
     
     trace = go.Scatter(
         x=Y_sklearn[:,0],
         y=Y_sklearn[:,1],
         mode='markers',
         marker = go.Marker(
             size=12,
             line= go.Line(
                 color='rgba(217, 217, 217, 0.14)',
                 width=0.5),
             opacity=0.8))
     traces.append(trace)
     
     
     data = go.Data(traces)
     layout = go.Layout(xaxis = go.XAxis(title='PC1', showline=False),
                        yaxis = go.YAxis(title='PC2', showline=False))
     fig = go.Figure(data=data, layout=layout)
     if self.outputType=='file':
         print(py.plot(fig, filename='pca.html'))
     else:
         return py.plot(fig, output_type='div')
Example #15
0
    def build_nodes(_G, _generation):
        nodes = _G.nodes(data=True)

        _node_trace = go.Scatter(
            x=[pos[node[0]][0] for node in nodes],
            y=[pos[node[0]][1] for node in nodes],
            name='gen %d' % _generation,
            text=[x[1]['probs'] for x in nodes],
            mode='markers',
            visible=True if _generation == 0 else 'legendonly',
            hoverinfo='text',
            marker=go.Marker(
                showscale=True,
                color=[x[1]['color'] for x in nodes],
                colorscale='RdBu',
                colorbar=dict(
                    title='Assurance',
                    xpad=100,
                ),
                cmin=0.,  # minimum color value
                cmax=1.,  # maximum color value
                cauto=False,  # do not automatically fit color values
                reversescale=False,
                size=15,
                line=dict(width=2)))
        return _node_trace
Example #16
0
def multixic(plotData, timeunit='s'):
    """

    Args:
        plotData: [(xic_x, xic_y, pts_x, pts_y),]
        timeunit: label string default = 's'

    Returns: plotly graph object

    """
    traces = []
    for xic_x, xic_y, pts_x, pts_y in plotData:
        traces.append(go.Scatter(x=xic_x, y=xic_y, mode='line', name='xic'))
        traces.append(
            go.Scatter(x=pts_x,
                       y=pts_y,
                       marker=go.Marker(size=10,
                                        color='black',
                                        symbol='triangle-down'),
                       mode='markers',
                       name='ms/ms points'))
    layout = dict(
        title='XIC',
        xaxis=dict(title='time ({})'.format(timeunit)),
        yaxis=dict(title='Intensity'),
    )

    fig = go.Figure(data=traces, layout=layout)
    plot_div = plot(fig, output_type='div', include_plotlyjs=False)
    return plot_div
Example #17
0
def location_tracker(name):
    lat, lon = current_location(name)
    weather_type, celsius, wind_speed = show_climate(name)
    lat = str(lat)
    lon = str(lon)
    data = go.Data([
        go.Scattermapbox(
            lat=[lat],
            lon=[lon],
            mode='markers',
            marker=go.Marker(size=11),
            text=[
                str(name).title() + '  ' + str(weather_type) + '  ' +
                str(celsius) + ' C  ' + str(wind_speed) + ' mph'
            ],
            #hoverlabel=dict(bgcolor='rgba(188, 20, 26, 0.5)'),
            hoverinfo='text')
    ])

    layout = go.Layout(
        #width=600,
        height=620,
        autosize=True,
        showlegend=False,
        hovermode='closest',
        mapbox=dict(accesstoken=access,
                    bearing=1,
                    center=dict(lat=int(lat.split('.')[0]),
                                lon=int(lon.split('.')[0])),
                    pitch=0,
                    zoom=6,
                    style='dark'),
    )

    return {'data': data, 'layout': layout}
Example #18
0
def plot_destinations(df_plotting):
    df_plotting = df_plotting.sort_values(by='count')
    sizes = np.sqrt(df_plotting['count']) + 3
    cluster_colors = np.log(df_plotting['count'])
    fig = go.Figure(data = [go.Scattermapbox(lat=df_plotting["latitude"],
                                            lon=df_plotting["longitude"],
                                            mode='markers',
                                            text="User ID: " + df_plotting["user_id"].apply(str) 
                                                 + "<br>Destination ID: " + df_plotting["cluster_assignment"].apply(str)
                                                 + "<br># Stops: " + df_plotting["count"].apply(str),
                                            textposition='bottom',
                                            marker=go.Marker(size=sizes,
                                                            opacity = 1, 
                                                            color=cluster_colors))
                            ],
                    layout = go.Layout(autosize=False,
                                    width=640,
                                    height=300,
                                    margin=go.Margin(
                                        l=0,
                                        r=0,
                                        b=0,
                                        t=0,
                                        pad=0),
                                    hovermode='closest',
                                    mapbox=dict(
                                        accesstoken=mapbox_access_token,
                                        bearing=0,
                                        center=dict(
                                            lat=df_plotting["latitude"].median(),
                                            lon=df_plotting["longitude"].median()),
                                    pitch=0,
                                    style='light',
                                    zoom=9.5)))
    return fig
Example #19
0
def plotly_scatter(x, y, mask_by=None, hover_text=None,
                   xlab='', ylab='', main='',
                   colorscale='Viridis', mask_title=''):
    data = go.Scatter(
        x=x,
        y=y,
        mode='markers')
    if hover_text is not None:
        data['text'] = hover_text
    if mask_by is not None:
        data.marker = go.Marker(
            colorbar=go.ColorBar(
                title=mask_title,
                titleside='right'),
            color=mask_by,
            colorscale=colorscale,
            showscale=True, opacity=0.7)
    trace = [data]
    layout = go.Layout(
        title=main,
        xaxis=dict(title=xlab,
                   autorange=True),
        yaxis=dict(title=ylab, scaleanchor='x',
                   autorange=True),
        height=600,
        width=600)

    fig = go.Figure(data=trace, layout=layout)
    # ST's y should be reversed to match the H&E image
    fig.layout.yaxis.autorange = 'reversed'

    return fig
def build_figure(layers_ls,
                 year,
                 colorscl=colorscl,
                 mapbox_access_token=None,
                 name='image.png'):
    data = go.Data([
        go.Scattermapbox(lat=[0],
                         lon=[0],
                         marker=go.Marker(cmax=5000,
                                          cmin=0,
                                          colorscale=colorscl,
                                          showscale=True,
                                          autocolorscale=False,
                                          color=range(0, 5000),
                                          colorbar=go.ColorBar(len=.89)),
                         mode='markers')
    ])

    layout = go.Layout(
        title='{}'.format(year),
        height=1050,
        width=800,
        autosize=True,
        hovermode='closest',
        mapbox=dict(layers=layers_ls,
                    accesstoken=mapbox_access_token,
                    bearing=0,
                    center=dict(lat=39.03, lon=-105.7),
                    pitch=0,
                    zoom=5.5,
                    style='light'),
    )

    fig = dict(data=data, layout=layout)
    py.image.save_as(fig, filename=name, width=750, height=575)
Example #21
0
        def getscatterobj(xobjname, yobjname):
            """
            Constructs a 2-D Scatter trace object where each point is a combination of the objective score for objective
            'xobjname' and of the objective score of objective 'yobjname'.
            :param xobjname: objective score for the horizontal axis
            :param yobjname: objective score for the vertical axis
            :return: plotly Scatter object
            """

            x = []
            y = []
            ranktext = []
            for item in self.objSpace:
                x.append(item[xobjname])
                y.append(item[yobjname])
                ranktext.append('rank: ' + str(item['goldberg']))

            return grob.Scatter(x=x,
                                y=y,
                                text=ranktext,
                                marker=grob.Marker(symbol='cross',
                                                   color='rgb(237,0,178)',
                                                   size=6),
                                mode='markers',
                                name='{:s} v {:s}'.format(xobjname, yobjname),
                                opacity=0.7)
def plot_scatter_dynamicTraces(datasets, datasets_labels, datsets_colors,
                               title):
    traces = []
    for x in xrange(0, len(datasets)):
        traces.append(
            go.Scatter(x=datasets[x]['path_lenght_total_meters'],
                       y=datasets[x]['computation_time_millis'],
                       mode='markers',
                       marker=go.Marker(color=datsets_colors[x]),
                       name=datasets_labels[x]))

    layout = go.Layout(
        title=title,
        xaxis=dict(title='Distance between points (in meters)',
                   titlefont=dict(family='Courier New, monospace',
                                  size=18,
                                  color='#7f7f7f')),
        yaxis=dict(title='Computation time (seconds)',
                   titlefont=dict(family='Courier New, monospace',
                                  size=18,
                                  color='#7f7f7f')))
    fig = dict(data=traces, layout=layout)
    plotly.offline.iplot(fig,
                         filename='./scatter_time_vs_pathLength',
                         image='png')
    pio.write_image(fig,
                    '/home/mfaria/Downloads/plot_scatter_dynamicTraces.svg',
                    scale=2)
Example #23
0
 def make_trace(df, package, rgb):
     x_date = df["commit_date"]
     y_package = df[package]
     return go.Trace(x=x_date,
                     y=y_package,
                     name=package,
                     marker=go.Marker(color=rgb))
def create_polyFitTrace(data,
                        trace_color,
                        polynomial_degree,
                        start,
                        label,
                        legend=True):
    # calculate polynomial
    x_original = data['path_lenght_total_meters']
    y_original = data['computation_time_millis']

    z = np.polyfit(x_original, y_original, polynomial_degree)
    f = np.poly1d(z)

    # calculate new x's and y's
    x_new = np.linspace(start, max(x_original) + 5, 120)
    y_new = f(x_new)
    degree_sym = u'\u00b0'.encode('utf-8').strip()
    trace = go.Scatter(x=x_new,
                       y=y_new,
                       mode='lines',
                       marker=go.Marker(color=trace_color),
                       name=str(polynomial_degree) + degree_sym +
                       ' poly fit of ' + label,
                       showlegend=legend)

    return trace
Example #25
0
def update_map(n_clicks, selected_sqft, hoverData, selected_cp, selected_beds,
               selected_ds, selected_types, toggle):

    column = {2: 'ClosingPrice', 1: 'DollarSqFt'}[toggle]

    date = hoverData['points'][0]['x']
    date_y = pd.to_datetime(date)
    start = date_y - datetime.timedelta(365)
    end = date_y + datetime.timedelta(35)

    year_labels = df['ClosingDate'].between(start, end)

    if selected_cp[1] > 9500000:
        selected_cp[1] = df['ClosingPrice'].max() + 1
    if selected_ds[1] > 7500:
        selected_ds[1] = df['DollarSqFt'].max() + 1
    if selected_sqft[1] > 7500:
        selected_sqft[1] = df['SqFt'].max()

    beds_labels = mult_selections(selected_beds, 'Beds', df)
    closing_price_labels = (df['ClosingPrice'] < selected_cp[1]) & (
        df['ClosingPrice'] > selected_cp[0])
    sqft_labels = (df['SqFt'] < selected_sqft[1]) & (df['SqFt'] >
                                                     selected_sqft[0])
    dollarsqft_label = (df['DollarSqFt'] < selected_ds[1]) & (df['DollarSqFt']
                                                              > selected_ds[0])
    types_labels = mult_selections(np.array(selected_types), 'Type', df)

    labels_1 = beds_labels & closing_price_labels & sqft_labels & dollarsqft_label & types_labels & year_labels
    df_output = df.loc[labels_1][['Lat', 'Lng', 'SellersAgent1', column]]

    c_min = df_output[column].min()
    c_range = df_output[column].max() - c_min

    df_output['color'] = df_output[column].apply(gen_color,
                                                 args=[c_range, c_min])

    data = go.Data([
        go.Scattermapbox(lat=df_output['Lat'],
                         lon=df_output['Lng'],
                         mode='markers',
                         marker=go.Marker(size=7,
                                          opacity=0.6,
                                          color=df_output['color']),
                         text=df_output[column].apply(intWithCommas))
    ])
    layout = go.Layout(
        autosize=False,
        width=1300,
        height=800,
        hovermode='closest',
        mapbox=dict(accesstoken=mapbox_access_token,
                    bearing=0,
                    center=dict(lat=40.717086, lon=-73.991040),
                    pitch=0,
                    zoom=10,
                    style='dark'),
    )

    return dict(data=data, layout=layout)
Example #26
0
def plot_stops(df_plotting):
    fig = go.Figure(data = [go.Scattermapbox(lat=df_plotting["latitude"],
                                            lon=df_plotting["longitude"],
                                            mode='markers',
                                            text="User ID: " + df_plotting["user_id"].apply(str),
                                            textposition='bottom',
                                            marker=go.Marker(size=5,opacity = 1, color='orange'))
                            ],
                    layout = go.Layout(autosize=False,
                                    width=640,
                                    height=300,
                                    margin=go.Margin(
                                        l=0,
                                        r=0,
                                        b=0,
                                        t=0,
                                        pad=0),
                                    hovermode='closest',
                                    mapbox=dict(
                                        accesstoken=mapbox_access_token,
                                        bearing=0,
                                        center=dict(
                                            lat=df_plotting["latitude"].median(),
                                            lon=df_plotting["longitude"].median()),
                                    pitch=0,
                                    style='light',
                                    zoom=9.5)))
    return fig
Example #27
0
def create_geo(summary_polyline):
    gps = polyline.decode(summary_polyline)
    df = pd.DataFrame(gps, columns=['lat', 'long'])
    df['cnt'] = 1

    data = go.Data([
        go.Scattermapbox(lat=df.lat,
                         lon=df.long,
                         mode='lines',
                         hoverinfo='text',
                         marker=go.Marker(size=17,
                                          color='rgb(255, 0, 0)',
                                          opacity=0.7))
    ])

    layout = go.Layout(
        autosize=False,
        hovermode='closest',
        showlegend=False,
        mapbox=dict(accesstoken=mapbox_access_token,
                    bearing=0,
                    center=dict(lat=df.lat[int(len(df) / 4)],
                                lon=df.long[int(len(df) / 4)]),
                    pitch=0,
                    zoom=10.5,
                    style='light'),
    )
    fig = dict(data=data, layout=layout)

    return fig
Example #28
0
def popularGraph(yearRange, gender):
    filteredDf = df[(df.Year >= yearRange[0]) & (df.Year <= yearRange[1]) &
                    (df.Gender == 'M')].groupby(
                        ['Name', 'Gender'],
                        as_index=False)[['n']].sum().sort_values(
                            ["n"], ascending=False).iloc[:10, ]
    girlsDf = df[(df.Year >= yearRange[0]) & (df.Year <= yearRange[1]) &
                 (df.Gender == 'F')].groupby(
                     ['Name', 'Gender'],
                     as_index=False)[['n']].sum().sort_values(
                         ["n"], ascending=False).iloc[:10, ]
    babyBlue = ['rgb(137, 207, 240)'] * 10
    babyPink = ['rgb(244, 194, 194)'] * 10
    myColors = babyBlue
    if gender == 'E':
        filteredDf = pd.concat([filteredDf, girlsDf])
        myColors.extend(babyPink)
    elif gender == 'F':
        filteredDf = girlsDf
        myColors = babyPink

    traces = [
        go.Bar(x=filteredDf.Name,
               y=filteredDf.n,
               name='Total Count',
               marker=go.Marker(color=myColors))
    ]
    return {
        'data':
        traces,
        'layout':
        go.Layout(title='Popular US Names',
                  margin=go.Margin(l=40, r=40, t=40, b=40))
    }
Example #29
0
def map_plotter(strata):
    try:
        graphs = []
        for st in strata:
            lats, lons, last_name = clustering(strata)
            graphs.append(
                go.Scattermapbox(lat=lats,
                                 lon=lons,
                                 mode='marker',
                                 marker=go.Marker(size=6,
                                                  color='rgb(255, 0, 0)',
                                                  opacity=0.7),
                                 text=last_name,
                                 hoverinfo='text'))

        layout = go.Layout(
            height=800,
            #width=500,
            title='Volcanoes',
            autosize=True,
            hovermode='closest',
            showlegend=False,
            mapbox=dict(accesstoken=token,
                        bearing=0,
                        pitch=0,
                        zoom=1.2,
                        style='light'),
        )

        fig = {'data': graphs, 'layout': layout}
        return fig

    except Exception as e:
        with open('errors.txt', 'w') as error:
            error.write(str(e))
Example #30
0
def gen_second_graph(interval):
    var = data.percent('Price')

    trace = go.Bar(
        y=var.tail(n=10).Price,
        x=var.tail(n=10).index,
        width=[3000 for i in range(len(var.tail(n=10)))],
        marker=go.Marker(color=[
            '#009688' if var.tail(n=10).Price[i] > 0 else '#b71c1c'
            for i in range(len(var.tail(n=10)))
        ]),
        hoverinfo='Δ%',
    )

    layout = go.Layout(height=200,
                       xaxis=dict(range=[
                           data.data.tail(n=10).index.min(),
                           data.data.tail(n=10).index.max()
                       ],
                                  showgrid=True,
                                  showline=True,
                                  zeroline=False,
                                  fixedrange=False,
                                  title='Test'),
                       margin=go.Margin(t=0, l=100, r=100))

    return go.Figure(data=[trace], layout=layout)