def update_map_constructeurs(input_value): """ Change la plage de données à afficher sur la carte en fonction des années cochées Args: Series "year"[] """ proddf = france[france.an_installation == 67] year_data = france[france.an_installation == 66] if input_value != []: for year in input_value: year_data = france[france.an_installation == year] proddf = pd.concat([proddf, year_data], ignore_index=True) else: proddf = france map_constructeurs = px.scatter_geo(proddf, lon="lon", lat="lat", scope='europe', size_max=15, center=center_lat_lon, color="panneaux_marque", projection="natural earth") map_constructeurs.update_layout(transition_duration=500, geo=dict(projection_scale=5)) return map_constructeurs
def plot_map(loc_dataframe: pd.DataFrame): """Produce map and plots with meta-data on each potential job""" figure = px.scatter_geo(loc_dataframe, lat="latitude", lon="longitude", hover_name='title', text='id') figure.update_layout(mapbox_style="carto-darkmatter") figure.show()
def plot_confirmed(tsmap_corona): fig = px.scatter_geo(data_frame=tsmap_corona, lat='Lat', lon='Long', hover_name='Country/Region', hover_data=['Province/State', 'Count'], size='size', animation_frame='Date', size_max=40, width=700, ) return fig
def create_graph(selected_value): if selected_value == 'Above Benchmark': df = psi90_df.query('Rate > 1') else: df = psi90_df.query('Rate < 1') return px.scatter_geo(df, lat='Latitude', lon='Longitude', locations='State', locationmode='USA-states', color='Provider_Name', hover_name='Provider_Name', scope='usa')
def update_map_production(input_value): """ Change la plage de données à afficher sur la carte en fonction de la surface sélectionnée Args: input_value[0] min input_value[1] max """ imax = np.exp(input_value[1]) imin = np.exp(input_value[0]) proddf = france[france.surface <= imax] proddf = proddf[proddf.surface >= imin] map_production = px.scatter_geo(proddf, lon="lon", lat="lat", scope='europe', size_max=10, center=center_lat_lon, color="production_surface", size="surface", projection="natural earth") map_production.update_layout(transition_duration=500, geo=dict(projection_scale=5)) return map_production
px.line(gapminder, x="year", y="lifeExp", color="continent", line_group="country", hover_name="country", line_shape="spline", render_mode="svg") #长条图 a=px.strip(data, x="x", y="y", orientation="h", color="name") a.write_html('6.html') #箱型图 a=px.box(data, x="x", y="y", color="name", notched=True) a.write_html('7.html') #小提琴图 a=px.violin(data, y="y", x="x", color="name", box=True, points="all", hover_data=data.columns) a.write_html('8.html') ''' #地图 a = px.scatter_geo(gapminder, locations="iso_alpha", color="continent", hover_name="country", size="pop", animation_frame="year", projection="natural earth") a.write_html('9.html')
re.sub(",", "", MM["Location Coordinates"][i].split()[0], count=1))) Lon.append(float(MM["Location Coordinates"][i].split()[1])) else: Lat.append(float("nan")) Lon.append(float("nan")) pass #Add columns to original dataframe MM["Lat"] = Lat MM["Lon"] = Lon #There is only one nan value, so we will delete it sum(np.isnan(MM["Lat"]), 0) MM = MM[~np.isnan(MM["Lat"])] #Plot based on coordinates GOLatLon = go.Figure() GOLatLon = GOLatLon.add_trace( go.Scattergeo(lon=MM["Lon"], lat=MM["Lat"], mode="markers")) GOLatLon.show() #Use size of dead and missing as marker size and as color as well GOLatLonSize = px.scatter_geo(data_frame=MM, lat="Lat", lon="Lon", size="Total Dead and Missing", color="Total Dead and Missing") GOLatLonSize.show()