def mainregress(selection, alpha): if len(selection) < 2: return x = xdown.get()['value'] y = ydown.get()['value'] tabdata = [] mldatax = [] mldatay = [] species = iris.Species.unique() for i, p in enumerate(selection['points']): mldatax.append(p['x']) mldatay.append(p['y']) tabdata.append({ x: p['x'], y: p['y'], 'species': species[p['curve']] }) X = np.c_[mldatax, np.array(mldatax) ** 2] ridge = KernelRidge(alpha=alpha).fit(X, mldatay) xspace = np.linspace(min(mldatax)-1, max(mldatax)+1, 100) plot = pw.scatter(mldatax, mldatay, label='train', markersize=15) for i, df in iris.groupby('Species'): plot += pw.scatter(df[x], df[y], label=i) plot += pw.line(xspace, ridge.predict(np.c_[xspace, xspace**2]), label='model', mode='lines') plot.xlabel = x plot.ylabel = y linear.do_all(plot.dict) table1.do_data(pd.DataFrame(tabdata))
def gen_stars(label): buss1 = business[business.categories.str.contains(label)] cache['bids'] = buss1.business_id chart = pw.scatter(buss1.review_count, buss1.stars, text=buss1.name) chart.xlabel('reviews') chart.ylabel('stars') chart.title(label) chart.layout['hovermode'] = 'closest' return chart
def pairplot(x, y): if x is None or y is None: return x = x['value'] y = y['value'] plot = pw.Chart() for i, df in iris.groupby('Species'): plot += pw.scatter(df[x], df[y], label=i) plot.xlabel = x plot.ylabel = y mainplot.do_all(plot.dict)
def pairplot(x, y): print('hellox') if x is None or y is None: return x = x['value'] y = y['value'] plot = pw.Chart() for i, df in iris.groupby('Species'): plot += pw.scatter(df[x], df[y], label=i) plot.xlabel(x) plot.ylabel(y) mainplot.do_all(plot.to_json())
def vizplace(place): bid = cache['bids'][place['point']] name = business[business.business_id == bid].name.values[0] chart = gen_busy(bid) chart.title(name) busy.do_all(chart.dict) revbid = reviews[reviews.business_id == bid] chart = pw.scatter(revbid.date, revbid.stars) chart.data[0]['marker'] = {'opacity': 1 / np.log(revbid.shape[0])} chart.ylabel('stars') chart.title(name) chart.layout['hovermode'] = 'closest' revdate.do_all(chart.dict)
def mainregress(selection, alpha): if len(selection) < 2: return x = xdown.get()['value'] y = ydown.get()['value'] tabdata = [] mldatax = [] mldatay = [] species = iris.Species.unique() for i, p in enumerate(selection['points']): mldatax.append(p['x']) mldatay.append(p['y']) tabdata.append({ x: p['x'], y: p['y'], 'species': species[p['curveNumber']] }) X = np.c_[mldatax, np.array(mldatax)**2] ridge = KernelRidge(alpha=alpha).fit(X, mldatay) xspace = np.linspace(min(mldatax) - 1, max(mldatax) + 1, 100) plot = pw.scatter(mldatax, mldatay, label='train', markersize=15) for i, df in iris.groupby('Species'): plot += pw.scatter(df[x], df[y], label=i) plot += pw.line(xspace, ridge.predict(np.c_[xspace, xspace**2]), label='model', mode='lines') plot.xlabel(x) plot.ylabel(y) linear.do_all(plot.to_json()) table1.do_update(tabdata)
def bubble(): chart = pw.scatter(data, markersize=np.arange(1, 6) * 10) chart.save('fig_bubble.html', **options)
def scatter(): pw.scatter(data).save('fig_scatter.html', **options)