def event_counts_date(request_disc=None): ''' Plot the average timeline of a certain institution request should be given as a dictionary ''' request = np.ones(df.shape[0], dtype=bool) for key in request_disc.keys(): if key == "institution": request = request & (df[key].str.contains(request_disc[key])) else: request = request & (df[key] == request_disc[key]) df_selected = df[request] df_selected["date_md"] = df_selected["admission_date"].apply( lambda dt: dt.replace(year=1980)) df_selected["year"] = df_selected["admission_date"].apply( lambda dt: dt.year) samp = df[request].iloc[0] title = "" for key in request_disc.keys(): title += samp[key] title += " " gg = p9.ggplot(df_selected) gg += p9.aes(x="date_md", y="admission_status") gg += p9.scale_x_datetime(date_breaks='10 days', date_labels="%m-%d", limits=np.array([ np.min(df_selected["date_md"]), pd.to_datetime("1980-4-20") ])) gg += p9.geom_count() gg += p9.ggtitle(title) return gg
def test_continuous_x_y(): p = ggplot(df, aes('y', 'y')) + geom_count() assert p + _theme == 'continuous_x_y'
def test_discrete_y(): p = ggplot(df, aes('y', 'x')) + geom_count() assert p + _theme == 'discrete_y'