Example #1
0
def update_resumen(start_date, end_date):
    # dataframes
    df_vf = query_by_daterange("valor_fondos", start_date, end_date)
    df_vf = df_vf[(df_vf != 0).all(1)]

    df_q = query_by_daterange("q_index", start_date, end_date)
    df_q = df_q[(df_q != 0).all(1)]

    usdclp = query_by_daterange("usdclp", start_date, end_date)
    usdclp = usdclp.drop_duplicates(subset=['Fecha'],
                                    keep='first',
                                    inplace=False,
                                    ignore_index=True).reset_index()

    df_nacio = query_by_daterange("inversion_nacional", start_date,
                                  end_date).dropna()
    df_inter = query_by_daterange("inversion_internacional", start_date,
                                  end_date).dropna()

    df_fn = query_by_daterange("forwards_nacionales", start_date, end_date)
    dfc = df_fn[df_fn['Nombre'] == 'Compra']
    dfv = df_fn[df_fn['Nombre'] == 'Venta']

    df_activos = query_by_daterange("activos", start_date, end_date).dropna()
    df_bonos_clp = df_activos[df_activos['Nombre'] == 'Bonos CLP']
    df_bonos_uf = df_activos[df_activos['Nombre'] == 'Bonos UF']

    df_inter = query_by_daterange("inversion_internacional", start_date,
                                  end_date).dropna()

    df_ex = query_by_daterange("inversion_internacional", start_date,
                               end_date).dropna()
    df_ex = df_ex[df_ex['Nombre'] == 'INVERSIÓN EXTRANJERA']

    # plots
    patrimonio_total = plots.patrimonio_ajustado(df_vf, df_q, usdclp, True)
    patrimonio_afps = plots.patrimonio_ajustado(df_vf, df_q, usdclp, False)

    inversiones_total = plots.bar_inversion(df_nacio, df_inter, 'TOTAL')

    inter_hedge = plots.fig_hedge(df_inter, dfc, dfv, df_fn, usdclp, True)
    inter_hedge_total = plots.fig_hedge_total(df_inter, dfc, dfv, df_fn,
                                              usdclp, True)

    inversiones_nacional = plots.bar_inversion_nacional(df_nacio, 'TOTAL')

    inversiones_internacional = plots.bar_inversion_internacional(
        df_inter, 'TOTAL')

    inversiones_nacional_monedas = plots.bar_inversion_nacional_monedas(
        df_bonos_clp, df_bonos_uf, 'TOTAL')

    extranjeros_total = plots.fig_total_ex_fwd(df_ex, dfc, dfv, df_fn)

    extranjeros_fondos = plots.fig_inversiones(df_inter,
                                               'INVERSIÓN EXTRANJERA', False)

    forwards_n = plots.fig_forwards_nacional(dfc, dfv, df_fn, usdclp, True)
    return patrimonio_total, patrimonio_afps, inversiones_total, inter_hedge_total, inter_hedge, inversiones_nacional, inversiones_nacional_monedas, inversiones_internacional, extranjeros_total, extranjeros_fondos, forwards_n
Example #2
0
def update_output_ex_rf(value, start_date, end_date):
    flag = "MMUSD"
    if value is not None:
        if len(value) != 0:
            flag = "porcentaje"
    df_inter = query_by_daterange("inversion_internacional", start_date,
                                  end_date).dropna()
    fig = plots.fig_inversiones(df_inter, 'RENTA FIJA', flag)
    return fig
Example #3
0
def update_output_dp(value, start_date, end_date):
    flag = "MMUSD"
    if value is not None:
        if len(value) != 0:
            flag = "porcentaje"
    # dataset
    df_nacio = query_by_daterange("inversion_nacional", start_date,
                                  end_date).dropna()
    fig = plots.fig_inversiones(df_nacio, 'Depósitos a Plazo', flag)
    return fig
Example #4
0
def update_output(value, start_date, end_date):
    flag = "MMUSD"
    if value is not None:
        if len(value) != 0:
            flag = "porcentaje"
    # dataset
    df_nacio = query_by_daterange("inversion_nacional", start_date,
                                  end_date).dropna()
    fig = plots.fig_inversiones(df_nacio, 'INVERSIÓN NACIONAL TOTAL', flag)
    return fig
Example #5
0
def update_fig_inver(start_date, end_date):
    df_total = query_by_daterange("inversion_total", start_date,
                                  end_date).dropna()
    fig = plots.fig_inversiones(df_total, 'TOTAL ACTIVOS', 'MMUSD')

    return fig