Example #1
0
pof = analysis.ParseOutputFile(outputdir + "/models_scores_sigmas-Apo.dat",
                               "Apo")
pof2 = analysis.ParseOutputFile(outputdir + "/models_scores_sigmas-Apo2.dat",
                                "Apo2")
pof.generate_datasets()
pof2.generate_datasets()
#pof.calculate_random_sample_convergence()
#pof2.calculate_random_sample_convergence()

conv = analysis.Convergence(pof, pof2, 500)

print(conv.total_score_pvalue_and_cohensd())

ranges = [0.01, 0.1, 0.2, 0.3, 0.4]
#print(conv.get_clusters(ranges))

#exit()

#print(conv.residue_pvalue_and_cohensd())
plots.plot_incorporation_curve_fits(pof, 500,
                                    outputdir + "/incorporation_plots/")
plots.plot_incorporation_curve_fits(pof2, 500,
                                    outputdir + "/incorporation_plots2/")
plots.plot_po_model_scores(pof, False, outputdir + "/apo_total_score.png", 500)
plots.plot_po_model_scores(pof2, False, outputdir + "/apo2_total_score.png",
                           500)
plots.plot_residue_protection_factors([pof, pof2],
                                      num_best_models=500,
                                      sort_sectors=True)
Example #2
0
sequence = "GMAEDMAADEVTAPPRKVLIISAGASHSVALLSGDIVCSWGRGEDGQLGHGDAEDRPSPTQLSALDGHQIVSVTCGADHTVAYSQSGMEVYSWGWGDFGRLGHGNSSDLFTPLPIKALHGIRIKQIACGDSHCLAVTMEGEVQSWGRNQNGQLGLGDTEDSLVPQKIQAFEGIRIKMVAAGAEHTAAVTEDGDLYGWGWGRYGNLGLGDRTDRLVPERVTSTGGEKMSMVACGWRHTISVSYSGALYTYGWSKYGQLGHGDLEDHLIPHKLEALSNSFISQISGGWRHTMALTSDGKLYGWGWNKFGQVGVGNNLDQCSPVQVRFPDDQKVVQVSCGWRHTLAVTERNNVFAWGRGTNGQLGIGESVDRNFPKIIEALSVDGASGQHIESSNIDPSSGKSWVSPAERYAVVPDETGLTDGSSKGNGGDISVPQTDVKRVRI"  # FASTA sequence
resrange = (100, 200
            )  # Residue range is a tuple in pdb numbering (starts at 1).
num_best_models = 200

#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
###   Analysis.
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

# Initialize System
sys = system.System(output_dir=None)
mol = sys.add_macromolecule(sequence, "ERa")
state = mol.get_apo_state()
#mol.add_state("088074")

pof = analysis.ParseOutputFile(outputdir + "/models_scores_sigmas-ERa_Apo.dat",
                               state)
pof2 = analysis.ParseOutputFile(
    outputdir2 + "/models_scores_sigmas-ERa_Apo.dat", state)
pof3 = analysis.ParseOutputFile(
    outputdir3 + "/models_scores_sigmas-ERa_Apo.dat", state)
pof4 = analysis.ParseOutputFile(
    outputdir4 + "/models_scores_sigmas-ERa_Apo.dat", state)
pof4 = analysis.ParseOutputFile(
    outputdir5 + "/models_scores_sigmas-ERa_Apo.dat", state)

plots.plot_residue_protection_factors([pof, pof2, pof3, pof4],
                                      num_best_models=num_best_models,
                                      resrange=(240, 260))
Example #3
0
# The output here is a list of clusters, as POF objects, containing the models from that cluster.
# We use these for downstream analysis/plotting
pofs = conv.cluster_at_threshold_and_return_pofs(sampling_precision)

# This command plots the protection factor distribution curves. It will do it for up to 5? POF files. After that, you
# run out of colors and it gets too busy anyways.
# - first input is a list of POF objects.
# - num_best_models is self-explanatory for POF. Set to "all" for all of them (should do that if you've already clustered)
# - resrange is the range to plot
# - true_vals are a list of numerical (log) protection values per residue. They will show up as horizontal green lines. Default is None.
# - sort_sectors sorts residues in the sectors by increasing Pf value by model.
# - outputdir is self explanatory.
plots.plot_residue_protection_factors(pofs,
                                      num_best_models=num_best_models,
                                      resrange=resrange,
                                      true_vals=res_pfs,
                                      sort_sectors=True,
                                      outputdir="./")

# Plot the incorporation curves.
#
# Use imagemagick montage to put them all together
# Name

exit()

plots.plot_incorporation_curve_fits(pofs[0],
                                    num_best_models,
                                    write_plots=True,
                                    output_directory=outputdir)
Example #4
0
import plots
import cProfile

##########################################
###    File/Directory Setup
outputdir = "./testing_heurtemp"  # output directory for the simulation results.
outputdir2 = "./testing_heurtemp2"  # output directory for the simulation results.

sequence = "GMAEDMAADEVTAPPRKVLIISAGASHSVALLSGDIVCSWGRGEDGQLGHGDAEDRPSPTQLSALDGHQIVSVTCGADHTVAYSQSGMEVYSWGWGDFGRLGHGNSSDLFTPLPIKALHGIRIKQIACGDSHCLAVTMEGEVQSWGRNQNGQLGLGDTEDSLVPQKIQAFEGIRIKMVAAGAEHTAAVTEDGDLYGWGWGRYGNLGLGDRTDRLVPERVTSTGGEKMSMVACGWRHTISVSYSGALYTYGWSKYGQLGHGDLEDHLIPHKLEALSNSFISQISGGWRHTMALTSDGKLYGWGWNKFGQVGVGNNLDQCSPVQVRFPDDQKVVQVSCGWRHTLAVTERNNVFAWGRGTNGQLGIGESVDRNFPKIIEALSVDGASGQHIESSNIDPSSGKSWVSPAERYAVVPDETGLTDGSSKGNGGDISVPQTDVKRVRI"  # FASTA sequence
resrange = (100, 200
            )  # Residue range is a tuple in pdb numbering (starts at 1).
num_best_models = 1000

#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
###   Analysis.
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

# Initialize System
sys = system.System(output_dir=None)
mol = sys.add_macromolecule(sequence, "ERa")
state = mol.get_apo_state()
#mol.add_state("088074")

pof = analysis.ParseOutputFile(outputdir + "/models_scores_sigmas-Apo.dat",
                               state)
pof2 = analysis.ParseOutputFile(outputdir2 + "/models_scores_sigmas-Apo.dat",
                                state)

plots.plot_residue_protection_factors([pof, pof2],
                                      num_best_models=num_best_models)
#sys.output.initialize_output_model_file(state, output_model.pf_grids)

sampler = sampling.MCSampler(sys)
sampler.run(10000, 2.0, write=True)

pof = analysis.ParseOutputFile(
    output_dir_sample + "/models_scores_sigmas-Apo.dat", states[0])
pof1 = analysis.ParseOutputFile(
    output_dir_sample + "/models_scores_sigmas-Apo1.dat", states[1])
pof2 = analysis.ParseOutputFile(
    output_dir_sample + "/models_scores_sigmas-Apo2.dat", states[2])
pof3 = analysis.ParseOutputFile(
    output_dir_sample + "/models_scores_sigmas-Apo3.dat", states[3])

plots.plot_residue_protection_factors([pof, pof1, pof2, pof3],
                                      num_best_models=1000,
                                      sort_sectors=True,
                                      show=True)

#plots.plot_po_model_scores(pof)
#plots.plot_po_model_scores(pof2)

#for i in range(2,10):
#    pof2.cluster_models_kmeans(nmodels=1000, nclust=i)
'''
exit()

for pep in dataset.get_peptides():
    for tp in pep.get_timepoints():
        #try:
        i = tp.get_replicates()[0]
        rep_score = -1*math.log(state.scoring_function.replicate_score(tp.get_model_deuteration()/pep.num_observable_amides*100, tp.get_replicates()[0].deut, tp.get_sigma()))