def plot_rdts(self, rdt_names=None, apply_fun=np.abs, combined=True): """ Plot Resonance Driving Terms """ LOG.debug("Plotting Resonance Driving Terms") rdts = self.get_rdts(rdt_names) is_s = rdts.columns.str.match(r'S$', case=False) rdts = rdts.dropna() rdts.loc[:, ~is_s] = rdts.loc[:, ~is_s].applymap(apply_fun) pstyle.set_style(self._plot_options.style, self._plot_options.manual) if combined: ax = rdts.plot(x='S') ax.set_title('Resonance Driving Terms') pstyle.small_title(ax) pstyle.set_name('Resonance Driving Terms', ax) pstyle.set_yaxis_label(apply_fun.__name__, 'F_{{jklm}}', ax) self._nice_axes(ax) else: for rdt in rdts.loc[:, ~is_s]: ax = rdts.plot(x='S', y=rdt) ax.set_title('Resonance Driving Term ' + rdt) pstyle.small_title(ax) pstyle.set_name('Resonance Driving Term ' + rdt, ax) pstyle.set_yaxis_label(apply_fun.__name__, rdt, ax) self._nice_axes(ax)
def plot_phase_advance(self, combined=True): """ Plots the phase advances between two consecutive elements Args: combined (bool): If 'True' plots x and y into the same axes. """ raise NotImplementedError('Plotting Phase Advance Shift is not Implemented yet.') #TODO: reimplement the phase-advance shift calculations (if needed??) LOG.debug("Plotting Phase Advance") tw = self.mad_twiss pa = self._phase_advance dpa = self._dphase_advance phase_advx = np.append(pa['X'].iloc[0, -1] + tw.Q1, pa['X'].values.diagonal(offset=-1)) dphase_advx = np.append(dpa['X'].iloc[0, -1], dpa['X'].values.diagonal(offset=-1)) phase_advy = np.append(pa['Y'].iloc[0, -1] + tw.Q2, pa['Y'].values.diagonal(offset=-1)) dphase_advy = np.append(dpa['Y'].iloc[0, -1], dpa['Y'].values.diagonal(offset=-1)) phase_adv = tw[["S"]].copy() phase_adv['MUX'] = np.cumsum(phase_advx + dphase_advx) % 1 - .5 phase_adv['MUY'] = np.cumsum(phase_advy + dphase_advy) % 1 - .5 title = 'Phase' pstyle.set_style(self._plot_options.style, self._plot_options.manual) if combined: ax_dx = phase_adv.plot(x='S') ax_dx.set_title(title) pstyle.small_title(ax_dx) pstyle.set_name(title, ax_dx) pstyle.set_yaxis_label('phase', 'x,y', ax_dx, delta=False) ax_dy = ax_dx else: ax_dx = phase_adv.plot(x='S', y='MUX') ax_dx.set_title(title) pstyle.small_title(ax_dx) pstyle.set_name(title, ax_dx) pstyle.set_yaxis_label('phase', 'x', ax_dx, delta=False) ax_dy = phase_adv.plot(x='S', y='MUY') ax_dy.set_title(title) pstyle.small_title(ax_dy) pstyle.set_name(title, ax_dy) pstyle.set_yaxis_label('phase', 'y', ax_dy, delta=False) for ax in (ax_dx, ax_dy): self._nice_axes(ax) ax.legend()
def plot_chromatic_beating(self, combined=True): """ Plot the Chromatic Beating Available after calc_chromatic_beating Args: combined (bool): If 'True' plots x and y into the same axes. """ LOG.debug("Plotting Chromatic Beating") chrom_beat = self.get_chromatic_beating().dropna() title = 'Chromatic Beating' pstyle.set_style(self._plot_options.style, self._plot_options.manual) if combined: ax_dx = chrom_beat.plot(x='S') ax_dx.set_title(title) pstyle.small_title(ax_dx) pstyle.set_name(title, ax_dx) pstyle.set_yaxis_label('dbetabeat', 'x,y', ax_dx) ax_dy = ax_dx else: ax_dx = chrom_beat.plot(x='S', y='DBEATX') ax_dx.set_title(title) pstyle.small_title(ax_dx) pstyle.set_name(title, ax_dx) pstyle.set_yaxis_label('dbetabeat', 'x', ax_dx) ax_dy = chrom_beat.plot(x='S', y='DBEATY') ax_dy.set_title(title) pstyle.small_title(ax_dy) pstyle.set_name(title, ax_dy) pstyle.set_yaxis_label('dbetabeat', 'y', ax_dy) for ax in (ax_dx, ax_dy): self._nice_axes(ax) ax.legend()
def plot_detuning(x, y, xerr, yerr, labels, xmin=None, xmax=None, ymin=None, ymax=None, odr_fit=None, odr_plot=plot_linear_odr, output=None, show=True): """ Plot amplitude detuning. Args: x: Action data. y: Tune data. xerr: Action error. yerr: Tune error. xmin: Lower action range to plot. xmax: Upper action range to plot. ymin: Lower tune range to plot. ymax: Upper tune range to plot. odr_fit: results of the odr-fit (e.g. see do_linear_odr) odr_plot: function to plot odr_fit (e.g. see plot_linear_odr) labels: Dict of labels to use for the data ("line"), the x-axis ("x") and the y-axis ("y") output: Output file of the plot. show: Show the plot in window. Returns: Plotted Figure """ ps.set_style( "standard", { u"lines.marker": u"o", u"lines.linestyle": u"", u'figure.figsize': [9.5, 4], }) fig = plt.figure() ax = fig.add_subplot(111) xmin = 0 if xmin is None else xmin xmax = max(x + xerr) * 1.05 if xmax is None else xmax offset = 0 if odr_fit: odr_plot(ax, odr_fit, lim=[xmin, xmax]) offset = odr_fit.beta[0] ax.errorbar(x, y - offset, xerr=xerr, yerr=yerr, label=labels.get("line", None)) # labels default_labels = const.get_paired_lables("", "") ax.set_xlabel(labels.get("x", default_labels[0])) ax.set_ylabel(labels.get("y", default_labels[1])) # limits ax.set_xlim(left=xmin, right=xmax) ax.set_ylim(bottom=ymin, top=ymax) # lagends ax.legend( loc='lower right', bbox_to_anchor=(1.0, 1.01), ncol=2, ) ax.ticklabel_format(style="sci", useMathText=True, scilimits=(-3, 3)) fig.tight_layout() fig.tight_layout() # needs two calls for some reason to look great if output: fig.savefig(output) ps.set_name(os.path.basename(output)) if show: plt.draw() return fig
def plot_bbq_data(bbq_df, interval=None, xmin=None, xmax=None, ymin=None, ymax=None, output=None, show=True, two_plots=False): """ Plot BBQ data. Args: bbq_df: BBQ Dataframe with moving average columns interval: start and end time of used interval, will be marked with red bars xmin: Lower x limit (time) xmax: Upper x limit (time) ymin: Lower y limit (tune) ymax: Upper y limit (tune) output: Path to the output file show: Shows plot if `True` two_plots: Plots each tune in it's own axes if `True` Returns: Plotted figure """ LOG.debug("Plotting BBQ data.") ps.set_style("standard", { u'figure.figsize': [12.24, 7.68], u"lines.marker": u"", u"lines.linestyle": u""} ) fig = plt.figure() if two_plots: gs = gridspec.GridSpec(2, 1, height_ratios=[1, 1]) ax = [fig.add_subplot(gs[1]), fig.add_subplot(gs[0])] else: gs = gridspec.GridSpec(1, 1, height_ratios=[1]) ax = fig.add_subplot(gs[0]) ax = [ax, ax] bbq_df.index = [datetime.datetime.fromtimestamp(time, tz=TIMEZONE) for time in bbq_df.index] handles = [None] * (3 * len(PLANES)) for idx, plane in enumerate(PLANES): color = ps.get_mpl_color(idx) mask = bbq_df[COL_IN_MAV(plane)] # plot and save handles for nicer legend handles[idx] = ax[idx].plot(bbq_df.index, bbq_df[COL_BBQ(plane)], color=ps.change_color_brightness(color, .4), marker="o", markerfacecolor="None", label="$Q_{:s}$".format(plane.lower(),) )[0] filtered_data = bbq_df.loc[mask, COL_BBQ(plane)].dropna() handles[len(PLANES)+idx] = ax[idx].plot(filtered_data.index, filtered_data.values, color=ps.change_color_brightness(color, .7), marker=".", label="filtered".format(plane.lower()) )[0] handles[2*len(PLANES)+idx] = ax[idx].plot(bbq_df.index, bbq_df[COL_MAV(plane)], color=color, linestyle="-", label="moving av.".format(plane.lower()) )[0] if ymin is None and two_plots: ax[idx].set_ylim(bottom=min(bbq_df.loc[mask, COL_BBQ(plane)])) if ymax is None and two_plots: ax[idx].set_ylim(top=max(bbq_df.loc[mask, COL_BBQ(plane)])) # things to add/do only once if there is only one plot for idx in range(1+two_plots): if interval: ax[idx].axvline(x=interval[0], color="red") ax[idx].axvline(x=interval[1], color="red") if two_plots: ax[idx].set_ylabel("$Q_{:s}$".format(PLANES[idx])) else: ax[idx].set_ylabel('Tune') ax[idx].set_ylim(bottom=ymin, top=ymax) ax[idx].yaxis.set_major_formatter(FormatStrFormatter('%.5f')) ax[idx].set_xlim(left=xmin, right=xmax) ax[idx].set_xlabel('Time') ax[idx].xaxis.set_major_formatter(mdates.DateFormatter('%H:%M:%S')) if idx: # don't show labels on upper plot (if two plots) # use the visibility to allow cursor x-position to be shown ax[idx].tick_params(labelbottom=False) ax[idx].xaxis.get_label().set_visible(False) if not two_plots or idx: # reorder legend ax[idx].legend(handles, [h.get_label() for h in handles], loc='lower right', bbox_to_anchor=(1.0, 1.01), ncol=3,) fig.tight_layout() fig.tight_layout() if output: fig.savefig(output) ps.set_name(os.path.basename(output)) if show: plt.draw() return fig
def plot_detuning(x, y, xerr, yerr, labels, xmin=None, xmax=None, ymin=None, ymax=None, odr_fit=None, odr_plot=plot_linear_odr, output=None, show=True): """ Plot amplitude detuning. Args: x: Action data. y: Tune data. xerr: Action error. yerr: Tune error. xmin: Lower action range to plot. xmax: Upper action range to plot. ymin: Lower tune range to plot. ymax: Upper tune range to plot. odr_fit: results of the odr-fit (e.g. see do_linear_odr) odr_plot: function to plot odr_fit (e.g. see plot_linear_odr) labels: Dict of labels to use for the data ("line"), the x-axis ("x") and the y-axis ("y") output: Output file of the plot. show: Show the plot in window. Returns: Plotted Figure """ ps.set_style("standard", {u"lines.marker": u"o", u"lines.linestyle": u"", u'figure.figsize': [9.5, 4], } ) fig = plt.figure() ax = fig.add_subplot(111) xmin = 0 if xmin is None else xmin xmax = max(x + xerr) * 1.05 if xmax is None else xmax offset = 0 if odr_fit: odr_plot(ax, odr_fit, lim=[xmin, xmax]) offset = odr_fit.beta[0] ax.errorbar(x, y - offset, xerr=xerr, yerr=yerr, label=labels.get("line", None)) # labels default_labels = const.get_paired_lables("", "") ax.set_xlabel(labels.get("x", default_labels[0])) ax.set_ylabel(labels.get("y", default_labels[1])) # limits ax.set_xlim(left=xmin, right=xmax) ax.set_ylim(bottom=ymin, top=ymax) # lagends ax.legend(loc='lower right', bbox_to_anchor=(1.0, 1.01), ncol=2,) ax.ticklabel_format(style="sci", useMathText=True, scilimits=(-3, 3)) fig.tight_layout() fig.tight_layout() # needs two calls for some reason to look great if output: fig.savefig(output) ps.set_name(os.path.basename(output)) if show: plt.draw() return fig