def calc_model(self): lines = lines_from_f26(self.opt.f26) wa = self.spec[self.i].wa dw = np.median(np.diff(wa)) print 'finding tau' if self.opt.wadiv is not None: dw1 = dw / self.opt.wadiv wa1 = np.arange(wa[0], wa[-1] + 0.5 * dw1, dw1) tau, ticks = find_tau(wa1, lines, self.opt.atom, logNthresh_LL=self.opt.logNthresh_LL) else: tau, ticks = find_tau(wa, lines, self.opt.atom, logNthresh_LL=self.opt.logNthresh_LL) model = np.exp(-tau) # if we want to calculate the optical depth per line, # do it here. if self.opt.wadiv is not None: model, _ = process_Rfwhm(self.opt.Rfwhm, wa1, model, []) else: model, _ = process_Rfwhm(self.opt.Rfwhm, wa, model, []) if self.opt.wadiv is not None: model = np.interp(wa, wa1, model) self.models[self.i] = model self.ticks = ticks self.model = model
def calc_model(self): lines = lines_from_f26(self.opt.f26) lines = [l for l in lines if l[0] not in ('__', '<>')] wa = self.spec[self.i].wa dw = np.median(np.diff(wa)) print('finding tau') if self.opt.wadiv is not None: dw1 = dw / self.opt.wadiv wa1 = np.arange(wa[0], wa[-1] + 0.5 * dw1, dw1) tau, ticks = find_tau(wa1, lines, self.opt.atom, logNthresh_LL=self.opt.logNthresh_LL) else: tau, ticks = find_tau(wa, lines, self.opt.atom, logNthresh_LL=self.opt.logNthresh_LL) model = np.exp(-tau) # if we want to calculate the optical depth per line, # do it here. if self.opt.wadiv is not None: model, _ = process_Rfwhm(self.opt.Rfwhm, wa1, model, []) else: model, _ = process_Rfwhm(self.opt.Rfwhm, wa, model, []) if self.opt.wadiv is not None: model = np.interp(wa, wa1, model) #self.apply_zero_offsets() self.models[self.i] = model self.ticks = ticks self.model = model
def convolve_LSF(self): print 'convolving' if self.opt.wadiv is not None: self.model, models = process_Rfwhm(self.opt.Rfwhm, self.wa1, self.model, []) else: self.model, models = process_Rfwhm(self.opt.Rfwhm, self.wa, self.model, []) if self.opt.wadiv is not None: self.model = np.interp(self.wa, self.wa1, self.model) #self.models = [np.interp(wa, self.wa1, m) for m in self.models] print 'done!'
def convolve_LSF(self): print 'convolving' if self.opt.wadiv is not None: self.model, _ = process_Rfwhm( self.opt.Rfwhm, self.wa1, self.model, []) else: self.model, _ = process_Rfwhm( self.opt.Rfwhm, self.wa, self.model, []) if self.opt.wadiv is not None: self.model = np.interp(self.wa, self.wa1, self.model) #self.models = [np.interp(wa, self.wa1, m) for m in self.models] print 'done!'