def plot(x, y, z, save): """Plots a test image of the Bivariate Gaussian Required Inputs x,y,z :: arrays :: must all be same length save :: string / bool :: save location or '' / False """ pp = Pretty_Plotter() pp.s = 1.0 pp._teXify() # LaTeX fig = plt.figure(figsize=(5, 5)) ax = fig.add_subplot(111) # create contour plot c = ax.contourf(x, y, z, 200, cmap=magma) # axis labels ax.set_xlabel(r'$\phi_1$', fontsize=pp.axfont) ax.set_ylabel(r'$\phi_2$', fontsize=pp.axfont) ax.grid(False) # remove grid pp.save_or_show(save, PLOT_LOC) pass
def plot(lines, save=False): """Plots the two-point correlation function Required Inputs itau :: {(x,y,e)} :: plots (x,y,e) as error bars pacc :: {(x,y,e)} :: plots (x,y,e) as error bars # subtitle :: str :: subtitle for the plot # op_name :: str :: the name of the operator for the title save :: bool :: True saves the plot, False prints to the screen """ pp = Pretty_Plotter() pp.s = 1.5 pp._teXify() # LaTeX fig, ax = plt.subplots(1, figsize = (10, 8)) ax = [ax] fig.suptitle(r"Showing that $n$ has little effect on $\tau_{\text{int}}$", fontsize=pp.ttfont+2) ax[0].set_title(r"HMC; lattice: $(100,)$; $m=0.01$; $M=10^5$; $\vartheta=\frac{\pi}{2}$", fontsize=pp.ttfont) ax[-1].set_xlabel(r'$\delta\tau$') ax[0].set_ylabel(r'$\tau_{\text{int}}$') for line in lines: m = next(markers) c = next(measured_colours) label = line['n_steps'] x = line['step_size'] y = line['itau'] ax[0].scatter(x, y, alpha=0.5, c=c, marker=m, label=int(label)) for a in ax: a.legend(loc='best', shadow=True, fontsize = pp.axfont) xi,xf = a.get_xlim() a.set_xlim(xmin=xi-0.01*(xf-xi), xmax=xf+0.01*(xf-xi)) # give a decent view of the first point yi,yf = a.get_ylim() a.set_ylim(ymax=yf + .05*(yf-yi), ymin=yi-.05*(yf-yi)) # give 5% extra room at top ax[0].legend(bbox_to_anchor=(0., -0.3, 1., .102), loc=9, ncol=6, mode="expand", borderaxespad=0.) fig.subplots_adjust(bottom=0.3) pp.save_or_show(save, PLOT_LOC) pass