Example #1
0
def primary_analysis(args):
    ds, edge_aw = load_all_vars_datasets(args)

    sts = {}
    st_diffs = {}
    toa_net_flux = {}
    toa_gm = {}
    G = {}

    for scenario in SCENARIOS.keys():
        # Get the control, 2co2 and 1%-2co2 surface temperatures.
        sts[scenario] = ds[scenario].variables['surf_temp'][0, 0]

        # Calc Top Of Atm net fluxes (incoming solar - outgoing solar - outgoing longwave).
        toa_net_flux[scenario] = ds[scenario].variables['toa_swdown'][0, 0] -\
                                 ds[scenario].variables['toa_swup'][0, 0] -\
                                 ds[scenario].variables['olr'][0, 0]

        # Calc some global means using a weighted average (Note calculation).
        toa_gm[scenario] = weighted_average(toa_net_flux[scenario], edge_aw)

    # Work out some differences.
    st_diffs['2co2'] = sts['2co2'] - sts['ctrl']
    st_diffs['1pct'] = sts['1pct'] - sts['ctrl']
    sa_mask = create_sa_mask(ds)
    #import ipdb; ipdb.set_trace()
    sa_st_diff = np.ma.array(st_diffs['1pct'], mask=sa_mask)
    masked_edge_aw = np.ma.array(edge_aw, mask=sa_mask)
    sa_tcr = weighted_average(sa_st_diff, masked_edge_aw)

    tcr = weighted_average(st_diffs['1pct'], edge_aw)

    G['2co2']  = toa_gm['2co2'] - toa_gm['ctrl']
    G['1pct']  = toa_gm['1pct'] - toa_gm['ctrl']

    # Work out alpha (climate feedback param) and climate sensitivity.
    alpha = (G['2co2'] - G['1pct']) / tcr
    clim_sens = G['2co2'] / alpha

    # Plot on nice overlays. Note this WILL NOT work on UCL computers.
    if args.plot_local or args.plot_global:
        from plotting import plot_all
        plot_all(ds['ctrl'], st_diffs['1pct'], toa_net_flux['2co2'], sa_mask, args)

    res = {'ds': ds,
           'edge_aw': edge_aw,
           'sts': sts,
           'toa_net_flux': toa_net_flux,
           'toa_gm': toa_gm,
           'st_diffs': st_diffs,
           'tcr': tcr,
           'sa_tcr': sa_tcr,
           'G': G,
           'alpha': alpha,
           'clim_sens': clim_sens}

    if args.output:
        print_res(res)

    return res
Example #2
0
def solver(centroids_set, inputs, outputs):
    centroids = list(centroids_set)
    did_change = True
    centroid_to_inputs = {centroid: [] for centroid in centroids}

    while did_change:
        did_change = False
        input_to_centroid = {}
        for row in inputs:
            input_to_centroid[row] = min(
                centroids,
                key=lambda centroid: euclidean_distance(row, centroid))

        centroid_to_inputs = {}
        new_centroids = []
        for centroid in centroids:
            x_sum = 0
            y_sum = 0
            count = 0

            centroid_to_inputs[centroid] = []
            for row, inputCentroid in input_to_centroid.items():
                if inputCentroid == centroid:
                    x_sum += row[0]
                    y_sum += row[1]
                    count += 1

                    centroid_to_inputs[centroid].append(row)
            new_centroids.append((x_sum / count, y_sum / count))

        invalid_count = len(centroids_set) - len(new_centroids)
        if invalid_count > 0:
            new_centroids += list(
                generate_centroids(get_domain(inputs), invalid_count))

        for newCentroid in new_centroids:
            did_change = did_change or newCentroid not in centroids

        if did_change:
            centroids = new_centroids
        else:
            display_results(centroid_to_inputs, inputs, outputs)

        points = plot_all(inputs, outputs, centroid_to_inputs, COLORS)
        if did_change:
            points.remove()

    return centroid_to_inputs
Example #3
0
if live_plot:
    plt.ioff()

Xs = se.get_Xs()
xls = pandas.ExcelWriter('results/result.xlsx', engine='xlsxwriter')

model_names = [
    'Ng', 'Nx', 'Nfa', 'Ne', 'Nco', 'No', 'Nn', 'Na', 'Nb', 'Nz', 'Ny', 'V',
    'Vg', 'T', 'pH'
]
model_data = pandas.DataFrame(m.get_data(), index=ts, columns=model_names)
model_data.index.name = 'ts'
model_data.to_excel(xls, 'model')

se_names = [name + add for add in ['', '_cov'] for name in model_names[:-1]]
se_data = pandas.DataFrame(se.get_data(), index=ts, columns=se_names)
se_data.index.name = 'ts'
se_data.to_excel(xls, 'se')

su_names = ['Cg', 'Cfa', 'Ce']
su_data = pandas.DataFrame(su.get_data(),
                           index=su.get_times(),
                           columns=su_names)
su_data.index.name = 'ts'
su_data.to_excel(xls, 'su')

xls.save()

plotting.plot_all('results/result.xlsx')
Example #4
0
            plotname += "_{}".format(base)
        except NameError:
            plotname = "_{}".format(base)

        for directory, name in zip(args.directories, args.names):
            if base in directory:
                plotname += "_{}".format(name)

    if args.offsets != [-1, 100]:
        plotname += "_offsets"
        for offset in args.offsets:
            plotname += "_{}".format(offset)

    # # plot everybin in same plot
    if args.offsets == [-1, 100]:
        plotting.plot_all(data_dict, args.offsets, args.names, odir, plotname, args.outname)

    ################################
    # one plot for each name
    plotting.plot_per_name(data_dict, args.offsets, args.names, odir, args.outname)

    plotting.plot_per_offbin(data_dict, args.offsets, args.names, odir, args.outname)

    #if (len(args.names) >= 2) & ("default" in args.names):
        ################################
        # improvement over default
    #    plot_improvement(data_dict, args.offsets, args.names, odir, plotname, args.outname)

    if (len(args.names) > 1):
        plotting.plot_improvement_methods(data_dict, args.offsets, args.names, odir, args.outname)
Example #5
0
aug_thrust = dry_thrust * 1.4

# max number convergence exit: mdot_ab = 1.93; my F = 89.895 kN
# loop for ab. This uses scipy.optimize.minimize() (aka python's fmincon) to
# look for the optimum mass flow to meet the augmented thrust requirement.
# abfun (and itbfun) are functions that take a mass flow and caclulate the
# difference between the thermocycle with that much mass in the 2nd burner and
# the augmented thrust. This lets minimize() find the closest value.
abfun = lambda mdot_ab: numpy.abs(aug_thrust - turbojet.thermocycle(
    0, mdot_ab)[0][0])
info_ab = minimize(abfun, (1))
mdot_ab_opt = info_ab.x

# loop for itb
# This does the same for ab but now with itb mass flow. A mass flow of zero for
# itb means that the itb changes nothing, and same for ab.
itbfun = lambda mdot_itb: numpy.abs(aug_thrust - turbojet.thermocycle(
    mdot_itb, 0)[0][0])
info_itb = minimize(itbfun, (1))
mdot_itb_opt = info_itb.x

abans, abvals = turbojet.thermocycle(0, mdot_ab_opt)
itbans, itbvals = turbojet.thermocycle(mdot_itb_opt, 0)

# Assignment 3 T-s diagrams
#turbojet.T_sDiagram('dry', dryans[-2], dryans[-1])
#turbojet.T_sDiagram('ab', abans[-2], abans[-1])
#turbojet.T_sDiagram('itb', itbans[-2], itbans[-1])

slopes = plotting.plot_all(dryans[-2:] + ['dry'], abans[-2:] + ['ab'],
                           itbans[-2:] + ['itb'])
Example #6
0
def predict_stability(args):
    logging.info("Starting pipeline")
    os.chdir(os.getcwd())
    logging.info(f'Current working directory: {os.getcwd()}')

    # Obtain, redirect and adapt user arguments
    chain_id = args.CHAIN
    ddgfile = check_path(args.DDG_FLAG_FILE)
    mode = args.MODE
    mutation_input = check_path(args.MUTATION_INPUT)
    outpath = check_path(args.OUTPUT_FILE)
    overwrite_path = args.OVERWRITE_PATH
    relaxfile = check_path(args.RELAX_FLAG_FILE)
    structure_list = check_path(args.STRUC_FILE)
    uniprot_accesion = check_path(args.UNIPROT_ID)
    run_struc = args.RUN_STRUC
    ligand = args.LIGAND
    mp_span = args.MP_SPAN_INPUT
    verbose = args.VERBOSE
    partition=args.SLURM_PARTITION

    if run_struc == None:
        run_struc = chain_id
    # System name
    name = os.path.splitext(os.path.basename(structure_list))[0]

    # Initiate folder structure
    folder = folder2(outpath, overwrite_path, is_mp=args.IS_MP)
    logger = make_log(folder,verbose)

    # Store input files
    input_dict = storeinputs.storeinputfuc(name, args, folder)

    if mode == "proceed" or mode == "relax" or mode == "ddg_calculation":
        mutation_input == "proceed"
        logger.info(f'No preparation, proceeding to execution')

    # Preprocessing
    if mode == 'create' or mode == 'fullrun':
        logger.info(f'Preparation started')
        # Get input files
        prep_struc = create_copy(
            input_dict['STRUC_FILE'], folder.prepare_input, name='input.pdb')

        # Defining structure parameters

        # Create structure instance
        logger.info(f'Creating structure instance')
        structure_instance = structure(chain_id,name,folder,prep_struc,run_struc,logger,uniprot_accesion=uniprot_accesion,)
        run_name = 'input'

        # adjust mp structure if MP_ALIGN_MODE is selected
        if args.IS_MP == True and args.MP_ALIGN_MODE != 'False':
            logger.info(f'Align the structure along the membrane using {args.MP_CALC_SPAN_MODE}')
            if args.MP_ALIGN_MODE == 'OPM':
                if args.MP_ALIGN_REF != '':
                    run_name = 'input_mp_aligned'
                    structure_instance.path = os.path.join(
                        folder.prepare_mp_superpose, f'{run_name}.pdb')
                    try:
                        mp_prepare.mp_superpose_opm(
                            args.MP_ALIGN_REF, prep_struc, structure_instance.path, target_chain=structure_instance.chain_id, write_opm=True)
                    except:
                        mp_prepare.mp_TMalign_opm(
                            args.MP_ALIGN_REF, prep_struc, structure_instance.path, target_chain=structure_instance.chain_id, write_opm=True)                        
                elif args.UNIPROT_ID != '':
                    logger.error('Uniprot-ID to ref pdb not implemented yet')
                    sys.exit()
                else:
                    logger.error(
                        'No reference or Uniprot-ID provided. Automatic extraction via sequence not yet implemented.')
                    sys.exit()
            else:
                logger.error(
                    'Other modes (PDBTM, TMDET, MemProtMD) not yet implemented.')
                sys.exit()

        structure_dic = get_structure_parameters(
            folder.prepare_checking, prep_struc)

        # Cleaning pdb and making fasta based on pdb or uniprot-id if provided
        logger.info(f'Prepare the pdb and extract fasta file')
        structure_instance.path_to_cleaned_pdb, struc_dic_cleaned = structure_instance.clean_up_and_isolate()
        structure_instance.fasta_seq = pdb_to_fasta_seq(
            structure_instance.path_to_cleaned_pdb)
        if uniprot_accesion != "":
            structure_instance.uniprot_seq = read_fasta(
                uniprot_accesion)
            structure_instance.muscle_align_to_uniprot(structure_instance.uniprot_seq)
        else:
            structure_instance.muscle_align_to_uniprot(structure_instance.fasta_seq)

        # Get span file for mp from cleaned file if not provided
        if args.IS_MP == True:
            if input_dict['MP_SPAN_INPUT'] == None:
                logger.info(f'Calculate span file with option {args.MP_CALC_SPAN_MODE}')
                if args.MP_CALC_SPAN_MODE == 'DSSP':
                    structure_instance.span = mp_prepare.mp_span_from_pdb_dssp(
                        structure_instance.path_to_cleaned_pdb, folder.prepare_mp_span, thickness=args.MP_THICKNESS, SLURM=False)
                elif args.MP_CALC_SPAN_MODE == 'octopus':
                    structure_instance.span = mp_prepare.mp_span_from_pdb_octopus(
                        structure_instance.path_to_cleaned_pdb, folder.prepare_mp_span, thickness=args.MP_THICKNESS, SLURM=False)
                elif args.MP_CALC_SPAN_MODE == 'False':
                    logger.warn(
                        'No span file provided and no calculation method selected.')
                else:
                    logger.error(
                        'Other modes (struc, bcl, Boctopus) not yet implemented.')
                    sys.exit()
            elif input_dict['MP_SPAN_INPUT'] != None:
                structure_instance.span = create_copy(
                    input_dict['MP_SPAN_INPUT'], folder.prepare_mp_span, name='input.span')

        # Making mutfiles and checks
        print(f'Convert prism file if present: {input_dict["PRISM_INPUT"]}')
        if input_dict['PRISM_INPUT'] == None:
            new_mut_input = input_dict['MUTATION_INPUT']
        #    mut_dic = get_mut_dict(input_dict['MUTATION_INPUT'])
        else:
            new_mut_input = os.path.join(folder.prepare_input, 'input_mutfile')
            mut_dic = prism_to_mut(input_dict['PRISM_INPUT'], new_mut_input)

        logger.info(f'Generate mutfiles.')
        print(input_dict['MUTATION_INPUT'])
        
        check2 = structure_instance.make_mutfiles(
            new_mut_input)
        check1 = compare_mutfile(structure_instance.fasta_seq,
                                 folder.prepare_mutfiles, folder.prepare_checking, new_mut_input)
        check3, errors = pdbxmut(folder.prepare_mutfiles, struc_dic_cleaned)
        check2 = False

        if check1 == True or check2 == True or check3 == True:
            print("check1:", check1, "check2:", check2, "check3:", check3)
            logger.error(
                "ERROR: STOPPING SCRIPT DUE TO RESIDUE MISMATCH BETWEEN MUTFILE AND PDB SEQUENCE")
            sys.exit()

        # Create hard link to mutfile directory and to output structure
        prepare_output_struc = create_copy(
            structure_instance.path_to_cleaned_pdb, folder.prepare_output, name='output.pdb')
        if args.IS_MP == True:
            prepare_output_span_dir = create_copy(folder.prepare_mp_span, f'{folder.prepare_output}', name='spanfiles', directory=True)
        else:
            prepare_output_ddg_mutfile_dir = create_copy(
                folder.prepare_mutfiles, folder.prepare_output, name='mutfiles', directory=True)

        # Copy files for relax & run
        relax_input_struc = create_copy(
            prepare_output_struc, folder.relax_input, name='input.pdb')

        # Generate sbatch files
        logger.info(f'Generate sbatch files')
        if args.IS_MP == True:

            # copy MP relax input files
            logger.info('Copy MP relax input files')
            relax_input_xml = create_copy(
                input_dict['RELAX_XML_INPUT'], folder.relax_input, name='relax.xml')
            relax_input_span_dir = create_copy(
                prepare_output_span_dir, folder.relax_input, name='spanfiles', directory=True)

            # Parse sbatch relax file
            logger.info('Create MP relax sbatch files.')
            path_to_relax_sbatch = mp_prepare.rosetta_relax_mp(
                folder, SLURM=True, num_struc=3, sys_name=name, partition=partition)

            # Parse sbatch relax parser
            path_to_parse_relax_results_sbatch = structure_instance.parse_relax_sbatch(
                folder, sys_name=f'{name}_relax', sc_name='relax_scores', partition=args.SLURM_PARTITION)

            # Parse sbatch ddg file
            ddg_input_ddgfile = create_copy(
                input_dict['DDG_FLAG_FILE'], folder.ddG_input, name='ddg_flagfile')
            ddg_input_span_dir = create_copy(
                prepare_output_span_dir, folder.ddG_input, name='spanfiles', directory=True)

            if args.MP_PH == -1:
                is_pH = 0
                pH_value = 7
            else:
                is_pH = 1
                pH_value = args.MP_PH
            path_to_ddg_calc_sbatch = mp_ddG.rosetta_ddg_mp_pyrosetta(
                folder, mut_dic, SLURM=True, sys_name=name, partition=args.SLURM_PARTITION,
                repack_radius=args.BENCH_MP_REPACK, lipids=args.MP_LIPIDS,
                temperature=args.MP_TEMPERATURE, repeats=args.BENCH_MP_REPEAT,
                is_pH=is_pH, pH_value=pH_value)
            # Parse sbatch ddg parser
            path_to_parse_ddg_sbatch = mp_ddG.write_parse_rosetta_ddg_mp_pyrosetta_sbatch(
                folder, uniprot=args.UNIPROT_ID, sys_name=name, output_name='ddG.out', partition=partition)
        else:
            # Parse sbatch relax file
            relax_input_relaxfile = create_copy(
                input_dict['RELAX_FLAG_FILE'], folder.relax_input, name='relax_flagfile')
            path_to_relax_sbatch = structure_instance.rosetta_sbatch_relax(
                folder, relaxfile=relax_input_relaxfile, sys_name=name,  partition=partition)
            # Parse sbatch relax parser
            path_to_parse_relax_results_sbatch = structure_instance.parse_relax_sbatch(
                folder,  partition=partition)
            # Parse sbatch relax parser
            path_to_parse_relax_results_sbatch = structure_instance.parse_relax_sbatch(
                folder, partition=args.SLURM_PARTITION)

            # Parse sbatch ddg file
            ddg_input_ddgfile = create_copy(
                input_dict['DDG_FLAG_FILE'], folder.ddG_input, name='ddg_flagfile')
            ddg_input_mutfile_dir = create_copy(
                prepare_output_ddg_mutfile_dir, folder.ddG_input, name='mutfiles', directory=True)
            path_to_ddg_calc_sbatch = structure_instance.write_rosetta_cartesian_ddg_sbatch(
                folder, ddg_input_mutfile_dir, ddgfile=ddg_input_ddgfile, sys_name=name,  partition=partition)
            # Parse sbatch ddg parser
            path_to_parse_ddg_sbatch = structure_instance.write_parse_cartesian_ddg_sbatch(
                folder,  partition=partition)
            # Parse sbatch ddg parser
            path_to_parse_ddg_sbatch = structure_instance.write_parse_cartesian_ddg_sbatch(
                folder, structure_instance.fasta_seq, structure_instance.chain_id, sys_name=name, partition=args.SLURM_PARTITION)

    # Execution
    # Single SLURM execution
    if mode == 'relax':
        parse_relax_process_id = run_modes.relaxation(folder)
        relax_output_strucfile = find_copy(
            folder.relax_run, '.pdb', folder.relax_output, 'output.pdb')


# if SLURM == False:
#    path_to_scorefile = os.path.join(structure_instance.path_to_run_folder + '/relax_scores.sc')
#    relax_pdb_out = relax_parse_results.parse_relax_results(path_to_scorefile, path_to_run_folder)
# else:
#    path_to_parse_relax_results_sbatch = structure_instance.parse_relax_sbatch(os.path.join(structure_instance.path_to_run_folder + '/relax_scores.sc'), structure_instance.path_to_run_folder)
#    relax_pdb_out = parse_relax_process_id = run_modes.relaxation(structure_instance.path_to_run_folder)
# logger.info(f"Relaxed structure for ddG calculations: {relax_pdb_out}")

    if mode == 'ddg_calculation':
        run_modes.ddg_calculation(folder)
#        ddg_output_score = find_copy(
#            folder.ddG_run, '.sc', folder.ddG_output, 'output.sc')

    if mode == 'analysis':
        calc_all(folder, sys_name=name)
        plot_all(folder, sys_name=name)

    # Full SLURM execution
    if mode == 'proceed' or mode == 'fullrun':
        # Start relax calculation
        parse_relax_process_id = run_modes.relaxation(folder)
        # relax_output_strucfile = find_copy(
        # folder.relax_run, '.pdb', folder.relax_output, 'output.pdb')
        # Start ddG calculation
        # ddg_input_struc = create_copy(
        # os.path.join(folder.relax_output, 'output.pdb'), folder.ddG_input,
        # name='input.pdb')
        run_modes.ddg_calculation(folder, parse_relax_process_id)
Example #7
0
from utilities import save_config
from plotting import plot_all
#from solar import SolarLocations

#%% Setup
# Load configuration settings
config = Settings()

# Process configuration settings
config = process_settings(config)

# Create directory for run results
config = setup_directories(config)

# Save copy of settings in output folder
save_config(config)

#%% Initialization
# Steady state solution
circular_orbit(config)

# Initialize GEKKO model        
m = define_model(config)

#%% Solve
# Optimize
optimize_trajectory(m,config)

#%% Post Processing and Plotting
plot_all(config.results_folder,config)
Example #8
0
def simulate(conn, output_dir, fname_peaks, fname_lfps_prefix, dt, n_runs, total_time, temperature, with_v1_l4, with_v1_l6, with_trn, input, con_input_lgn,
             n_e_lgn, n_i_lgn, n_e_l6, n_i_l6, n_e_l4, n_i_l4, n_trn,
             threshold, delay, delay_distbtn_e_l6_lgn, delay_e_l4_e_lgn, delay_e_lgn_i_l4, delay_e_lgn_e_l4, delay_e_lgn_e_l6,
             delay_e_lgn_trn, delay_e_l4_trn, delay_distbtn_e_l6_trn, delay_e_lgn_i_l6,
             lgn_params, l4_params, l6_params, trn_params, w_e_lgn_trn, w_trn_e_lgn, w_e_l6_trn, w_e_l4_e_l6,
             w_e_lgn_e_l4, w_e_l4_e_lgn, w_e_l6_e_lgn, w_e_lgn_e_l6, w_e_lgn_i_l6, w_e_lgn_i_l4, w_e_l4_trn,
             connect_e_lgn_e_l4, connect_e_lgn_i_l4, connect_e_l4_e_lgn, connect_e_lgn_i_l6, connect_e_lgn_e_l6, connect_e_l6_e_lgn, connect_e_l4_trn, connect_e_l6_trn,
             connect_e_lgn_trn, connect_trn_e_lgn, connect_e_l4_e_l6):

    start = np.empty(shape=0)
    bf_plot = np.empty(shape=0)
    af_plot = np.empty(shape=0)
    end = np.empty(shape=0)

    h.celsius = temperature
    print "* * * Simulating %d runs * * *" % n_runs
    h.tstop = total_time
    for n_sim in range(n_runs):
        print "#%d: Constructing circuits..." % (n_sim + 1)
        start = np.append(start, timer())
        # creating LGN network
        i_lgn, i_lgn_rec = create_network(n_i_lgn)
        e_lgn, e_lgn_rec = create_network(n_e_lgn)

        # create connections in LGN
        e_lgn_e_lgn_syn = e_net_connect(e_lgn, e_lgn, threshold, delay, lgn_params['w_e_lgn_e_lgn'], 1)
        i_lgn_i_lgn_syn = i_net_connect(i_lgn, i_lgn, threshold, delay, lgn_params['w_i_lgn_i_lgn'], 1)
        i_lgn_e_lgn_syn = i_net_connect(i_lgn, e_lgn, threshold, lgn_params['delay_i_e'], lgn_params['w_i_lgn_e_lgn'], 1)
        e_lgn_i_lgn_syn = e_net_connect(e_lgn, i_lgn, threshold, lgn_params['delay_e_i'], lgn_params['w_e_lgn_i_lgn'], 1)  # weight should be set to zero

        e_l4, e_l4_rec = create_network(n_e_l4)
        i_l4, i_l4_rec = create_network(n_i_l4)
        if with_v1_l4:
            # create connections in V1 L4
            e_l4_e_l4_sin = e_net_connect(e_l4, e_l4, threshold, delay, l4_params['w_e_l4_e_l4'], l4_params['p_e_e'])
            i_l4_i_l4_sin = i_net_connect(i_l4, i_l4, threshold, delay, l4_params['w_i_l4_i_l4'], l4_params['p_i_i'])
            e_l4_i_l4_sin = e_net_connect(e_l4, i_l4, threshold, delay, l4_params['w_e_l4_i_l4'], l4_params['p_e_i'])
            i_l4_e_l4_sin = i_net_connect(i_l4, e_l4, threshold, delay, l4_params['w_i_l4_e_l4'], l4_params['p_i_e'])


            # extrinsic connections

            # Population 1) 15 LGN E cells connect to 15 V1 L4 E cells
            # Population 2) 5 LGN E cells connect to 5 V1 L4 I cells
            #
            # Population 1 and population 2 are different
            #
            # Hirsch et al., 1998
            if connect_e_lgn_e_l4:
                # connections from Glutamatergic neurons of network LGN to network V1 L4
                e_lgn_e_l4_syn = partial_e_net_connect(e_lgn, e_l4, 2./4, 1, 2./4, 1, threshold, delay_e_lgn_e_l4, w_e_lgn_e_l4)
                # e_lgn_e_l4_syn = topographically_e_connect(e_lgn, e_l4, 0, 1, threshold, delay_e_lgn_e_l4, w_e_lgn_e_l4)

            if connect_e_l4_e_lgn:
                # TODO: feedback connections are only of 3/4 of neurons?
                # connections from Glutamatergic neurons of network 2 (V1) to network 1 (LGN)
                e_l4_e_lgn_syn = partial_e_net_connect(e_l4, e_lgn, 1./4, 1, 1./4, 1, threshold, delay_e_l4_e_lgn, w_e_l4_e_lgn)

            if connect_e_lgn_i_l4:
                # connections from Glutamatergic neurons of network (LGN) to network V1 L4
                e_lgn_i_l4_syn = partial_e_net_connect(e_lgn, i_l4, 0, 2./4, 0, 2./4, threshold, delay_e_lgn_i_l4, w_e_lgn_i_l4)
                # e_lgn_i_l4_syn = topographically_e_connect(e_lgn, i_l4, 0, 1./4, threshold, delay_e_lgn_i_l4, w_e_lgn_i_l4)

        i_l6, i_l6_rec = create_network_L6(n_i_l6)
        e_l6, e_l6_rec = create_network_L6(n_e_l6)
        if with_v1_l6:
            # create connections in V1 L6
            e_l6_e_l6_sin = e_net_connect(e_l6, e_l6, threshold, delay, l6_params['w_e_l6_e_l6'], l6_params['p_e_e'])
            i_l6_i_l6_sin = i_net_connect(i_l6, i_l6, threshold, delay, l6_params['w_i_l6_i_l6'], l6_params['p_i_i'])
            e_l6_i_l6_syn = e_net_connect(e_l6, i_l6, threshold, delay, l6_params['w_e_l6_i_l6'], l6_params['p_e_i'])
            i_l6_e_l6_syn = i_net_connect(i_l6, e_l6, threshold, delay, l6_params['w_i_l6_e_l6'], l6_params['p_i_e'])

            # connections from V1 input (L4) layer to L6
            if connect_e_l4_e_l6:
                e_l4_e_l6_sin = e_net_connect(e_l4, e_l6, threshold, 1, w_e_l4_e_l6, 1)

            # ALL-to-ALL connections of feedback
            if connect_e_l6_e_lgn:
                e_l6_e_lgn_sin = e_ct_net_connect_delay_dist(e_l6, e_lgn, threshold, delay_distbtn_e_l6_lgn, w_e_l6_e_lgn)

            # TODO: Connectivity as Hirsch
            if connect_e_lgn_e_l6:
                e_lgn_e_l6_syn = e_net_connect(e_lgn, e_l6, threshold, delay_e_lgn_e_l6, w_e_lgn_e_l6, 1)

            # TODO: Connectivity as Hirsch
            if connect_e_lgn_i_l6:
                e_lgn_i_l6_syn = e_net_connect(e_lgn, i_l6, threshold, delay_e_lgn_i_l6, w_e_lgn_i_l6, 1)

        # create trn neurons (inhibitory only)
        trn, trn_rec = create_network(n_trn)
        if with_trn:
            trn_trn_syn = i_net_connect(trn, trn, threshold, trn_params['delay_i_i'], trn_params['w_trn_trn'],
                                        trn_params['p_i_i'])

            # connections from Glutamatergic neurons of network V1 L4 to trn
            if with_v1_l4 and connect_e_l4_trn:
                e_l4_trn_syn = e_net_connect(e_l4, trn, threshold, delay_e_l4_trn, w_e_l4_trn, 1)

            if with_v1_l6 and connect_e_l6_trn:
                e_l6_trn_syn = e_net_connect_delay_dist(e_l6, trn, threshold, delay_distbtn_e_l6_trn, w_e_l6_trn, 1)

            if connect_e_lgn_trn:
                # connections from Glutamatergic neurons of LGN to TRN
                # ALL-to-ALL
                e_lgn_trn_syn = e_net_connect(e_lgn, trn, threshold, delay_e_lgn_trn, w_e_lgn_trn, 1)

                # # topographic
                # topographically_connect(e_lgn, trn, 0, 1, threshold, delay_e_lgn_trn, w_e_lgn_trn)

            if connect_trn_e_lgn:
                # ALL-to-ALL
                trn_e_lgn_sin = i_net_connect(trn, e_lgn, threshold, delay, w_trn_e_lgn, 1)

        # generate inputs to LGN
        netStim = list()
        i_stims = list()
        e_stims = list()
        stim_rec = h.Vector()
        for stim_i in range(0, input['nstims']):
            netStim.append(h.NetStimPois(input['position']))
            netStim[stim_i].start = 0
            netStim[stim_i].mean = input['stimrate']  # 100 = 10 Hz, 10 = 100 Hz, 1 = 1000Hz, 5 = 200 Hz, 6 = 150 Hz
            netStim[stim_i].number = 0
            if stim_i < n_i_lgn:
                i_stims.append(h.NetCon(netStim[stim_i], i_lgn[stim_i].synE, con_input_lgn['gaba_threshold'],
                                        con_input_lgn['gaba_delay'], con_input_lgn['gaba_weight']))
            if stim_i < n_e_lgn:
                e_stims.append(h.NetCon(netStim[stim_i], e_lgn[stim_i].synE, con_input_lgn['glut_threshold'],
                                        con_input_lgn['glut_delay'], con_input_lgn['glut_weight']))
        e_stims[0].record(stim_rec)  # measure poisson input #0 to LGN Excitatory Cell #0

        timeaxis = h.Vector()
        timeaxis.record(h._ref_t)
        print "#%d: Running simulation..." % (n_sim + 1)
        h.run()
        bf_plot = np.append(bf_plot, timer())
        mean_lgn, mean_trn, mean_v1_l4, mean_v1_l6 = plot_all(conn, output_dir, fname_peaks, n_sim, dt, timeaxis, stim_rec, with_v1_l4, with_v1_l6, with_trn,
                                                              e_lgn_rec, i_lgn_rec, trn_rec, e_l4_rec, i_l4_rec, e_l6_rec, i_l6_rec,
                                                              n_e_lgn, n_i_lgn, n_trn, n_e_l4, n_i_l4, n_e_l6, n_i_l6)
        af_plot = np.append(af_plot, timer())
        ofname = fname_lfps_prefix + str(n_sim) + ".txt"

        n = len(timeaxis)
        indx = np.arange(0, n+1, 40)  # store one in every 40 values

        lfp_lgn = np.array(mean_lgn)
        lfp_trn = np.array(mean_trn)
        lfp_l4 = np.array(mean_v1_l4)
        lfp_l6 = np.array(mean_v1_l6)
        time = np.array(timeaxis)
        np.savetxt(ofname, (lfp_lgn[indx], lfp_trn[indx], lfp_l4[indx], lfp_l6[indx], time[indx]))
        end = np.append(end, timer())

        print "Progress: %d runs simulated %d runs missing" % (n_sim + 1, n_runs - n_sim - 1)
    print_time_stats(start, bf_plot, af_plot, end)
Example #9
0
""" Run perfs to gather data and then plot them. """
from run import run_all
from plotting import plot_all

run_all()
plot_all()
Example #10
0
def simulate(n_runs, total_time, with_V1_L4, with_V1_L6, with_TRN, input, con_input_lgn,
             n_e_lgn, n_i_lgn, n_e_l6, n_i_l6, n_e_l4, n_I_L4, n_trn,
             delay_distbtn_E_L6_LGN, delay_E_L4_E_LGN, delay_E_LGN_I_L4, delay_E_LGN_E_L4, delay_E_LGN_E_L6,
             delay_E_LGN_TRN, delay_E_L4_TRN, delay_distbtn_E_L6_TRN, delay_E_LGN_I_LGN, delay_I_LGN_E_LGN, delay_E_LGN_I_L6,
             lgn_params, l4_params, l6_params, W_TRN_TRN, W_E_LGN_TRN, W_TRN_E_LGN, w_e_l6_trn, W_E_L4_E_L6,
             W_E_LGN_E_L4, W_E_L4_E_LGN, w_e_l6_e_lgn, W_E_LGN_E_L6, W_E_LGN_I_L6, W_E_LGN_I_L4, W_E_L4_TRN,
             connect_E_LGN_E_L4, connect_E_LGN_I_L4, connect_E_L4_E_LGN, connect_E_LGN_I_L6, connect_E_LGN_E_L6, connect_E_L6_E_LGN, connect_E_L4_TRN, connect_E_L6_TRN,
             connect_E_LGN_TRN, connect_TRN_E_LGN, connect_E_L4_E_L6):

    print "* * * Simulating %d runs * * *" % n_runs
    h.tstop = total_time
    for n_sim in range(n_runs):

        # creating LGN network
        i_lgn, I_LGN_rec = createNetwork(n_i_lgn)
        e_lgn, E_LGN_rec = createNetwork(n_e_lgn)

        #create connections in network 1 (LGN)
        e_lgn_e_lgn_syn = e_net_connect(e_lgn, e_lgn, 0, 1, lgn_params['w_e_lgn_e_lgn'])
        i_lgn_i_lgn_syn = i_net_connect(i_lgn, i_lgn, 0, 1, lgn_params['w_e_lgn_e_lgn'])
        i_lgn_e_lgn_syn = i_net_connect(i_lgn, e_lgn, 0, 1, lgn_params['w_e_lgn_e_lgn'])
        e_lgn_i_lgn_syn = e_net_connect(e_lgn, i_lgn, 0, 1, lgn_params['w_e_lgn_e_lgn'])  # weight should be set to zero

        e_l4, E_L4_rec = createNetwork(n_e_l4)
        i_l4, I_L4_rec = createNetwork(n_I_L4)
        if with_V1_L4:
            #create connections in network 2  (V1 superficial)

            e_l4_e_l4_sin = e_net_connect(e_l4, e_l4, 0, 1, l4_params['w_e_l4_e_l4'])
            i_l4_i_l4_sin = i_net_connect(i_l4, i_l4, 0, 1, l4_params['w_i_l4_i_l4'])
            e_l4_i_l4_sin = e_net_connect(e_l4, i_l4, 0, 1, l4_params['w_e_l4_i_l4'])
            i_l4_e_l4_sin = i_net_connect(i_l4, e_l4, 0, 1, l4_params['w_i_l4_e_l4'])

            # Population 1) 15 LGN E cells connect to 15 V1 L4 E cells
            # Population 2) 5 LGN E cells connect to 5 V1 L4 I cells
            #
            # Population 1 and population 2 are different
            #
            # Hirsch et al., 1998

            #extrinsic connections
            #ALL-to-ALL connectivity
            if connect_E_LGN_E_L4:
                #connections from Glutamatergic neurons of network LGN to network V1 L4
                # e_lgn_e_l4_sin = e_net_connect(e_lgn, e_l4, 0, delay_E_LGN_E_L4, W_E_LGN_E_L4)
                sin_E_LGN_E_L4 = list()
                len_LGN = len(e_lgn)
                for neuron_i in range(len(e_lgn)*1/4, len(e_lgn)):
                    e_lgn[neuron_i].soma.push()
                    for neuron_j in range(len(e_l4)*1/4, len(e_l4)):
                        sin_E_LGN_E_L4.append(h.NetCon(e_lgn[neuron_i].soma(0.5)._ref_v, e_l4[neuron_j].synE,
                                                       0, delay_E_LGN_E_L4, W_E_LGN_E_L4[neuron_i, neuron_j]))
                    h.pop_section()


                    #topographic connectivity
                    # if connect_E_LGN_E_L4:
                    #     #extrinsic connections
                    #     #connections from Glutamatergic neurons of network 1 (LGN) to network 2 (V1)
                    #
                    #     Glutnt1nt2_sin = list()
                    #     for neuron_i in range(len(e_lgn)):
                    #         e_lgn[neuron_i].soma.push()
                    #         Glutnt1nt2_sin.append(h.NetCon(e_lgn[neuron_i].soma(0.5)._ref_v, e_l4[neuron_i].synE,
                    #                              0, delay_E_LGN_E_L4, W_E_LGN_E_L4[neuron_i, neuron_i]))
                    #         h.pop_section()


            if connect_E_L4_E_LGN:
                #connections from Glutamatergic neurons of network 2 (V1) to network 1 (LGN)
                Glutnt2nt1_sin = list()
                for neuron_i in range(len(e_l4)*1/4, len(e_l4)):
                    e_l4[neuron_i].soma.push()
                    for neuron_j in range(len(e_lgn)*1/4, len(e_lgn)):
                        Glutnt2nt1_sin.append(h.NetCon(e_l4[neuron_i].soma(0.5)._ref_v, e_lgn[neuron_j].synE_CT,
                                                       0, delay_E_L4_E_LGN, W_E_L4_E_LGN[neuron_i, neuron_j]))
                    h.pop_section()

            # Population 1) 15 LGN E cells connect to 15 V1 L4 E cells
            # Population 2) 5 LGN E cells connect to 5 V1 L4 I cells
            #
            # Population 1 and population 2 are different
            #
            # Hirsch et al., 1998
            #All-to-ALL connectivity
            if connect_E_LGN_I_L4:
                # connections from Glutamatergic neurons of network (LGN) to network V1 L4
                sin_E_LGN_I_L4 = list()
                len_LGN = len(e_lgn)
                for neuron_i in range(0, len_LGN*1/4):
                    e_lgn[neuron_i].soma.push()
                    for neuron_j in range(0, len(i_l4)*1/4):
                        sin_E_LGN_I_L4.append(h.NetCon(e_lgn[neuron_i].soma(0.5)._ref_v, i_l4[neuron_j].synE,
                                                       0, delay_E_LGN_I_L4, W_E_LGN_I_L4[neuron_i, neuron_j]))
                    h.pop_section()

                #            #topographic connectivity
                #            if connect_E_LGN_I_L4:
                #                # connections from Glutamatergic neurons of network (LGN) to network V1 L4
                #                sin_E_LGN_I_L4 = list()
                #                len_LGN = len(e_lgn)
                #                for neuron_i in range(0, len_LGN*1/4):
                #                    e_lgn[neuron_i].soma.push()
                #                    sin_E_LGN_I_L4.append(h.NetCon(e_lgn[neuron_i].soma(0.5)._ref_v, i_l4[neuron_i].synE,
                #                                                       0, delay_E_LGN_I_L4, W_E_LGN_I_L4[neuron_i, neuron_i]))
                #                    h.pop_section()

        i_l6, I_L6_rec = createNetworkL6(n_i_l6)
        e_l6, E_L6_rec = createNetworkL6(n_e_l6)
        if with_V1_L6:
            # create connections in network 2  (V1 L6)
            e_l6_e_l6_sin = e_net_connect(e_l6, e_l6, 0, 1, l6_params['w_e_l6_e_l6'])
            i_l6_i_l6_sin = i_net_connect(i_l6, i_l6, 0, 1, l6_params['w_i_l6_i_l6'])
            i_l6_e_l6_syn = i_net_connect(i_l6, e_l6, 0, 1, l6_params['w_i_l6_e_l6'])
            e_l6_i_l6_syn = e_net_connect(e_l6, i_l6, 0, 1, l6_params['w_e_l6_i_l6'])

            # connections from V1 input (L4) layer to L6
            if connect_E_L4_E_L6:
                e_l4_e_l6_sin = e_net_connect(e_l4, e_l6, 0, 1, W_E_L4_E_L6)

#ALL-to-ALL connections of feedback
            if connect_E_L6_E_LGN:
                e_l6_e_lgn_sin = e_ct_net_connect_delay_dist(e_l6, e_lgn, 0, delay_distbtn_E_L6_LGN, w_e_l6_e_lgn)

#            if connect_E_L6_E_LGN:
#                #connections from Glutamatergic neurons of network 2 (V1) to network 1 (LGN)
#                k = 0
#                GlutL6nt1_sin = list()
#                for neuron_i in range(len(e_l6)):
#                    e_l6[neuron_i].soma.push()
#                    GlutL6nt1_sin.append(h.NetCon(e_l6[neuron_i].soma(0.5)._ref_v, e_lgn[neuron_i].synE_CT,
#                                        0, delay_distbtn_E_L6_LGN[k], w_e_l6_e_lgn[neuron_i, neuron_i]))
#                    k += 1
#                    h.pop_section()

            # TODO: Connectivity as Hirsch
            if connect_E_LGN_E_L6:
                e_lgn_e_l6_syn = e_net_connect(e_lgn, e_l6, 0, delay_E_LGN_E_L6, W_E_LGN_E_L6)

            # TODO: Connectivity as Hirsch
            if connect_E_LGN_I_L6:
                e_lgn_i_l6_syn = e_net_connect(e_lgn, i_l6, 0, delay_E_LGN_I_L6, W_E_LGN_I_L6)

        #create trn neurons (inhibitory only)
        trn, TRN_rec = createNetwork(n_trn)
        if with_TRN:
            trn_trn_syn = i_net_connect(trn, trn, 0, 1, W_TRN_TRN)

            #connections from Glutamatergic neurons of network V1 L4 to trn
            if with_V1_L4 and connect_E_L4_TRN:
                e_l4_trn_syn = e_net_connect(e_l4, trn, 0, delay_E_L4_TRN, W_E_L4_TRN)

            if with_V1_L6 and connect_E_L6_TRN:
                e_l6_trn_syn = e_net_connect_delay_dist(e_l6, trn, 0, delay_distbtn_E_L6_TRN, w_e_l6_trn)

            #ALL-to-ALL
            if connect_E_LGN_TRN:
                #connections from Glutamatergic neurons of network 1 (LGN) to trn
                e_lgn_trn_syn = e_net_connect(e_lgn, trn, 0, delay_E_LGN_TRN, W_E_LGN_TRN)

            #topographic
#            if connect_E_LGN_TRN:
#                #connections from Glutamatergic neurons of LGN to trn
#                GlutGABAtneurons_sin1 = list()
#                delayGlutGABAtneurons = 1
#                for neuron_i in range(len(e_lgn)):
#                    e_lgn[neuron_i].soma.push()
#                    GlutGABAtneurons_sin1.append(h.NetCon(e_lgn[neuron_i].soma(0.5)._ref_v, trn[neuron_i].synE, 0, delayGlutGABAtneurons,
#                                                              W_E_LGN_TRN[neuron_i, neuron_i]))
#                     h.pop_section()
            #ALL-to-ALL
            if connect_TRN_E_LGN:
                trn_e_lgn_sin = i_net_connect(trn, e_lgn, 0, 1, W_TRN_E_LGN)

        # generate inputs to LGN
        netStim = list()
        i_stims = list()
        e_stims = list()
        stim_rec = h.Vector()

        for stim_i in range(0, input['nstims']):
            netStim.append(h.NetStimPois(input['input']))
            netStim[stim_i].start = 0
            netStim[stim_i].mean = input['stimrate']  # 100 = 10 Hz, 10 = 100 Hz, 1 = 1000Hz, 5 = 200 Hz, 6 = 150 Hz
            netStim[stim_i].number = 0
            if stim_i < n_i_lgn:
                i_stims.append(h.NetCon(netStim[stim_i], i_lgn[stim_i].synE, con_input_lgn['gaba_threshold'],
                                        con_input_lgn['gaba_delay'], con_input_lgn['gaba_weight']))
            e_stims.append(h.NetCon(netStim[stim_i], e_lgn[stim_i].synE, con_input_lgn['glut_threshold'],
                                    con_input_lgn['glut_delay'], con_input_lgn['glut_weight']))

        e_stims[0].record(stim_rec)  # measure poisson input #0 to LGN Cell #0

        timeaxis = h.Vector()
        timeaxis.record(h._ref_t)

        h.run()

        meanLGN, meanTRN, meanV1input, meanV1output = plot_all(timeaxis, stim_rec, with_V1_L4, with_V1_L6, with_TRN,
                                                               E_L4_rec, TRN_rec, E_L6_rec, E_LGN_rec,
                                                               I_L6_rec, i_lgn, i_l4, I_LGN_rec, I_L4_rec,
                                                               n_e_lgn, n_e_l6, n_e_l4, n_trn, n_i_l6)

        ofname = "../data_files/" "sim" + str(n_sim+0) + ".txt"

        n = len(timeaxis)
        indx = np.arange(1, n, 40)

        w = np.array(meanLGN)
        u = np.array(meanTRN)
        x = np.array(meanV1input)
        y = np.array(meanV1output)
        z = np.array(timeaxis)
        np.savetxt(ofname, (w[indx], u[indx], x[indx], y[indx], z[indx]))

        print "Progress: %d runs simulated %d runs missing" % (n_sim + 1, n_runs - n_sim - 1)
Example #11
0
def run_optim(key: np.ndarray, lhs: np.ndarray, tmp: np.ndarray,
              xhats: np.ndarray, tmp_c: np.ndarray, xhats_c: np.ndarray,
              xstar: float, bound: Text, out_dir: Text, x: np.ndarray,
              y: np.ndarray) -> Tuple[int, float, float, int, float, float]:
    """Run optimization (either lower or upper) for a single xstar."""
    # Directory setup
    # ---------------------------------------------------------------------------
    out_dir = os.path.join(out_dir, f"{bound}-xstar_{xstar}")
    if FLAGS.store_data:
        logging.info(f"Current run output directory: {out_dir}...")
        if not os.path.exists(out_dir):
            os.makedirs(out_dir)

    # Init optim params
    # ---------------------------------------------------------------------------
    logging.info(
        f"Initialize parameters L, mu, log_sigma, lmbda, tau, slack...")
    key, subkey = random.split(key)
    params = init_params(subkey)

    for parname, param in zip(['L', 'mu', 'log_sigma'], params):
        logging.info(f"Parameter {parname}: {param.shape}")
        logging.info(f"  -> {parname}: {param}")

    tau = FLAGS.tau_init
    logging.info(f"Initial tau = {tau}")
    fin_tau = np.minimum(FLAGS.tau_factor**FLAGS.num_rounds * tau,
                         FLAGS.tau_max)
    logging.info(f"Final tau = {fin_tau}")

    # Set constraint approach and slacks
    # ---------------------------------------------------------------------------
    slack = FLAGS.slack * np.ones(FLAGS.num_z * 2)
    lmbda = np.zeros(FLAGS.num_z * 2)
    logging.info(f"Lambdas: {lmbda.shape}")

    logging.info(
        f"Fractional tolerance (slack) for constraints = {FLAGS.slack}")
    logging.info(f"Set relative slack variables...")
    slack *= np.abs(lhs.ravel())
    logging.info(f"Set minimum slack to {FLAGS.slack_abs}...")
    slack = np.maximum(FLAGS.slack_abs, slack)
    logging.info(f"Slack {slack.shape}")
    logging.info(f"Actual slack min: {np.min(slack)}, max: {np.max(slack)}")

    # Setup optimizer
    # ---------------------------------------------------------------------------
    logging.info(f"Vanilla SGD with init_lr={FLAGS.lr}...")
    logging.info(f"Set learning rate schedule")
    step_size = optim.inverse_time_decay(FLAGS.lr, FLAGS.decay_steps,
                                         FLAGS.decay_rate, FLAGS.staircase)
    init_fun, update_fun, get_params = optim.sgd(step_size)

    logging.info(
        f"Init state for JAX optimizer (including L, mu, log_sigma)...")
    state = init_fun(params)

    # Setup result dict
    # ---------------------------------------------------------------------------
    logging.info(f"Initialize dictionary for results...")
    results = {
        "mu": [],
        "sigma": [],
        "cholesky_factor": [],
        "tau": [],
        "lambda": [],
        "objective": [],
        "constraint_term": [],
        "rhs": []
    }
    if FLAGS.plot_intermediate:
        results["grad_norms"] = []
        results["lagrangian"] = []

    logging.info(f"Evaluate at xstar={xstar}...")

    logging.info(f"Evaluate {bound} bound...")
    sign = 1 if bound == "lower" else -1

    # ===========================================================================
    # OPTIMIZATION LOOP
    # ===========================================================================
    # One-time logging before first step
    # ---------------------------------------------------------------------------
    key, subkey = random.split(key)
    obj, rhs, psisum, constr = objective_rhs_psisum_constr(
        subkey, get_params(state), lmbda, tau, lhs, slack, xstar, tmp_c,
        xhats_c)
    results["objective"].append(obj)
    results["constraint_term"].append(psisum)
    results["rhs"].append(rhs)

    logging.info(f"Objective: scalar")
    logging.info(f"RHS: {rhs.shape}")
    logging.info(f"Sum over Psis: scalar")
    logging.info(f"Constraint: {constr.shape}")

    tril_idx = np.tril_indices(FLAGS.dim_theta + 1)
    count = 0
    logging.info(f"Start optimization loop...")
    for _ in tqdm(range(FLAGS.num_rounds)):
        # log current parameters
        # -------------------------------------------------------------------------
        results["lambda"].append(lmbda)
        results["tau"].append(tau)
        cur_L, cur_mu, cur_logsigma = get_params(state)
        cur_chol = make_cholesky_factor(cur_L)[tril_idx].ravel()[1:]
        results["mu"].append(cur_mu)
        results["sigma"].append(np.exp(cur_logsigma))
        results["cholesky_factor"].append(cur_chol)

        subkeys = random.split(key, num=FLAGS.opt_steps + 1)
        key = subkeys[0]
        # inner optimization for subproblem
        # -------------------------------------------------------------------------
        for j in range(FLAGS.opt_steps):
            v, grads = lagrangian_value_and_grad(subkeys[j + 1],
                                                 get_params(state), lmbda, tau,
                                                 lhs, slack, xstar, tmp, xhats,
                                                 sign)
            state = update_fun(count, grads, state)
            count += 1
            if FLAGS.plot_intermediate:
                results["lagrangian"].append(v)
                results["grad_norms"].append(
                    [np.linalg.norm(grad) for grad in grads])

        # post inner optimization logging
        # -------------------------------------------------------------------------
        key, subkey = random.split(key)
        obj, rhs, psisum, constr = objective_rhs_psisum_constr(
            subkey, get_params(state), lmbda, tau, lhs, slack, xstar, tmp_c,
            xhats_c)
        results["objective"].append(obj)
        results["constraint_term"].append(psisum)
        results["rhs"].append(rhs)

        # update lambda, tau
        # -------------------------------------------------------------------------
        lmbda = update_lambda(constr, lmbda, tau)
        tau = np.minimum(tau * FLAGS.tau_factor, FLAGS.tau_max)

    # Convert and store results
    # ---------------------------------------------------------------------------
    logging.info(f"Finished optimization loop...")

    logging.info(f"Convert all results to numpy arrays...")
    results = {k: np.array(v) for k, v in results.items()}

    logging.info(f"Add final parameters and lhs to results...")
    L, mu, log_sigma = get_params(state)
    results["final_L"] = L
    results["final_mu"] = mu
    results["final_log_sigma"] = log_sigma
    results["lhs"] = lhs

    if FLAGS.store_data:
        logging.info(f"Save result data to...")
        result_path = os.path.join(out_dir, "results.npz")
        onp.savez(result_path, **results)

    # Generate and store plots
    # ---------------------------------------------------------------------------
    if FLAGS.plot_intermediate:
        fig_dir = os.path.join(out_dir, "figures")
        logging.info(f"Generate and save all plots at {fig_dir}...")
        plotting.plot_all(results, x, y, response, fig_dir)

    # Compute last valid and last satisfied
    # ---------------------------------------------------------------------------
    maxabsdiff = np.array([np.max(np.abs(lhs - r)) for r in results["rhs"]])
    fin_i = np.sum(~np.isnan(results["objective"])) - 1
    logging.info(f"Final non-nan objective at {fin_i}.")
    fin_obj = results["objective"][fin_i]
    fin_maxabsdiff = maxabsdiff[fin_i]

    sat_i = [
        np.all((np.abs((lhs - r) / lhs) < FLAGS.slack)
               | (np.abs(lhs - r) < FLAGS.slack_abs)) for r in results["rhs"]
    ]
    sat_i = np.where(sat_i)[0]

    if len(sat_i) > 0:
        sat_i = sat_i[-1]
        logging.info(f"Final satisfied constraint at {sat_i}.")
        sat_obj = results["objective"][sat_i]
        sat_maxabsdiff = maxabsdiff[sat_i]
    else:
        sat_i = -1
        logging.info(f"Constraints were never satisfied.")
        sat_obj, sat_maxabsdiff = np.nan, np.nan

    logging.info("Finished run.")
    return fin_i, fin_obj, fin_maxabsdiff, sat_i, sat_obj, sat_maxabsdiff