def callback(params, t, g): x, y, xy = sample_data(1, n_data, ker=ker) preds = hyper_predict(params, x, xy, nn_arch, act) # [1, nd] if plot: p.plot_iter(ax, x[0], x[0], y, preds) # cov_compare = np.cov(y.ravel())-np.cov(preds.ravel()) print("ITER {} | OBJ {} COV DIFF {}".format(t, objective(params, t), 1))
def callback(params, t, g): y = sample_gpp(x, 1, ker) #y=sample_function(x,1) preds = hyper_predict(params, x, y, nn_arch, act) #[1,nd] if plot: p.plot_iter(ax, x, x, y, preds) cd = np.cov(y.ravel()) - np.cov(preds.ravel()) print("ITER {} | OBJ {} COV DIFF {}".format(t, objective(params, t), cd))
def callback(params, t, g): plot_inputs = np.linspace(-10, 10, num=500)[:, None] f_bnn = sample_bnn(params, plot_inputs, 5, arch, act) #print(params[1]) # Plot data and functions. p.plot_iter(ax, inputs, plot_inputs, targets, f_bnn) print("ITER {} | LOSS {}".format(t, -loss(params, t)))
def callback(params, t, g): plot_inputs = np.linspace(-8, 8, num=400)[:, None] f_bnn = sample_bnn(params, plot_inputs, 5, arch, act) # Plot data and functions. p.plot_iter(ax, inputs, plot_inputs, targets, f_bnn) print("ITER {} | LOSS {}".format(t, -loss(params, t))) if t > 50: D = inputs, targets x_plot = np.reshape(np.linspace(-8, 8, 400), (400, 1)) pred = sample_bnn(params, x_plot, 5, arch, act) p.plot_deciles(x_plot.ravel(), pred.T, D, str(t) + "bnnpostfullprior", plot="gpp")
def callback(params, t, g): preds = bnn_predict(params, x, nn_arch, act)[:, :, 0] #[1,nd] #print(preds.shape) if plot: plot_iter(ax, x.ravel(), x.ravel(), y, preds[0]) print("ITER {} | OBJ {}".format(t, objective(params, t)))