video_fotograms_folder2, i + 1) # pf.create_image_Variational_weights_network(myHalfBayesianMLP, video_fotograms_folder3, i+1) pf.create_Bayesian_analysis_charts( myGeneralVBModel, X_data_tr, Y_data_tr, X_data_val, Y_data_val, tr_data_loss, val_data_loss, KL_loss, xgrid_real_func, ygrid_real_func, video_fotograms_folder4, i + 1) if (save_model_per_epochs): myGeneralVBModel.save(folder_model + "model_parameters_epoch:%i.pk" % i) if (create_video_training): # # pf.create_video_from_images(video_fotograms_folder,output_file = "./training_loss.avi", fps = 2) pf.create_video_from_images(video_fotograms_folder2, output_file=folder_images + "/training_weights.avi", fps=2) # pf.create_video_from_images(video_fotograms_folder3,output_file = "./training_Variational_weights.avi", fps = 2) pf.create_video_from_images(video_fotograms_folder4, output_file=folder_images + "/training_Variational_weights.avi", fps=2) """ ###################### SAVE MODEL #################### """ myGeneralVBModel.save(folder_model + "model_parameters_epoch:%i.pk" % i) """ ##################### STATIC PLOTS ###################### """ # Set it in no training
final_loss_val.append(myGeneralVBModel.get_loss(Xval, Yval).item()) ##### CREATE VIDEO OF TRAINING ############### if (create_video_training): if ((i+1)%Step_video == 0): myGeneralVBModel.eval() # pf.create_image_weights_epoch(myGeneralVBModel, video_fotograms_folder_weights, i+1) pf.create_Bayesian_analysis_charts(myGeneralVBModel, X_data_tr, Y_data_tr, X_data_val, Y_data_val, tr_data_loss, val_data_loss, KL_loss,final_loss_tr,final_loss_val, xgrid_real_func, ygrid_real_func, video_fotograms_folder_training, i+1) if(create_video_training): # pf.create_video_from_images(video_fotograms_folder_weights,output_file =folder_images + "/training_weights.avi", fps = 2) pf.create_video_from_images(video_fotograms_folder_training,output_file = folder_images + "/training_Variational_weights.avi", fps = 2) """ ###################### SAVE MODEL #################### """ myGeneralVBModel.save(folder_model + "model_parameters_epoch:%i.pk"%i) """ ##################### STATIC PLOTS ###################### """ # Set it in no training myGeneralVBModel.eval() if (plot_predictions): ####### PLOT THE LEARNT FUNCTION ############
x_grid = np.linspace(np.min([X_data_tr]) -1, np.max([X_data_val]) +1, 100) y_grid = myBasicMLP.predict(torch.tensor(x_grid.reshape(-1,1),device=cf_a.device, dtype=cf_a.dtype)).detach().numpy() pf.create_image_training_epoch(X_data_tr, Y_data_tr, X_data_val, Y_data_val, tr_loss, val_loss, x_grid, y_grid, cf_a, video_fotograms_folder, i) pf.create_image_weights_epoch(myBasicMLP, video_fotograms_folder2, i) myBasicMLP.train() ## Convert MSE to RMSE tr_loss = np.sqrt(tr_loss) val_loss = np.sqrt(val_loss) if(create_video_training): # pf.create_video_from_images(video_fotograms_folder,output_file = "./training_loss.avi", fps = 2) pf.create_video_from_images(video_fotograms_folder2,output_file = "./training_weights.avi", fps = 2) """ ###################### SAVE MODEL #################### """ myBasicMLP.save(folder_model + "model_parameters_epoch:%i.pk"%i) """ ##################### STATIC PLOTS ###################### """ # Set it in no training myBasicMLP.eval() if (plot_predictions): ####### PLOT THE LEARNT FUNCTION ############
pf.create_image_training_epoch(X_data_tr, Y_data_tr, X_data_val, Y_data_val, tr_loss, val_loss, x_grid, y_grid, cf_a, video_fotograms_folder, i) pf.create_image_weights_epoch(myBasicMLP, video_fotograms_folder2, i) myBasicMLP.train() ## Convert MSE to RMSE tr_loss = np.sqrt(tr_loss) val_loss = np.sqrt(val_loss) if (create_video_training): # pf.create_video_from_images(video_fotograms_folder, output_file="./training_loss.avi", fps=2) pf.create_video_from_images(video_fotograms_folder2, output_file="./training_weights.avi", fps=2) """ ###################### SAVE MODEL #################### """ myBasicMLP.save(folder_model + "model_parameters_epoch:%i.pk" % i) """ ##################### STATIC PLOTS ###################### """ # Set it in no training myBasicMLP.eval() if (plot_predictions):
legend=10, xticks=10, yticks=10) image_name = "reconstrunction" gl.savefig(folder_images + image_name, dpi=100, sizeInches=[20, 7]) """ ###################### SAVE MODEL #################### """ myVAE.save(folder_model + "model_parameters_epoch:%i.pk" % i) """ ##################### STATIC PLOTS ###################### """ if (create_video_training): # pf.create_video_from_images(video_fotograms_folder_training, output_file=folder_images + "/training_weights.avi", fps=2) if (0): gl.init_figure() ax1 = gl.subplot2grid((2, 1), (0, 0), rowspan=1, colspan=1) ax2 = gl.subplot2grid((2, 1), (1, 0), rowspan=1, colspan=1, sharex=ax1) title = "Bar Chart. " + str(symbols[0]) + "(" + ul.period_dic[1440] + ")" alpha = 0.9 cumulated_samples = 0 for i in range(5): # (len(days_keys)): samples_index = day_dict[days_keys[i]]