Example #1
0
for i in range(len(overhead)):
		print i, overhead[i]

name = pf.read_column(filename, 0, dtype=str, stripper='|', splitter = '|')

# T90
T90 = pf.read_column(filename, 1, stripper='|', splitter = '|')
T90_mask = np.isfinite(T90)

# pflx
peak_flux_1024 = pf.read_column(filename, 34, stripper='|', splitter = '|' )
peak_flux_1024_err = pf.read_column(filename, 35, stripper='|', splitter = '|' )
peak_flux_1024_mask = np.isfinite(peak_flux_1024) 

# Band spectrum at pflx
nd_pflx_band_ampl     = pf.read_data(filename, 79, stripper='|', splitter = '|')
nd_pflx_band_epeak    = pf.read_data(filename, 82, stripper='|', splitter = '|')
nd_pflx_band_alpha    = pf.read_data(filename, 85, stripper='|', splitter = '|')
nd_pflx_band_beta     = pf.read_data(filename, 88, stripper='|', splitter = '|')
pflx_band_redchisq    = pf.read_column(filename, 99, stripper='|', splitter = '|')
pflx_band_dof         = pf.read_column(filename, 101, stripper='|', splitter = '|')
pflx_best_fitting_model = pf.read_column(filename, 21, dtype=str, stripper='|', splitter = '|')

# Band spectrum time integrated
nd_flnc_band_ampl     = pf.read_data(filename, 9, stripper='|', splitter = '|')
nd_flnc_band_epeak    = pf.read_data(filename, 12, stripper='|', splitter = '|')
nd_flnc_band_alpha    = pf.read_data(filename, 15, stripper='|', splitter = '|')
nd_flnc_band_beta     = pf.read_data(filename, 18, stripper='|', splitter = '|')
flnc_best_fitting_model = pf.read_column(filename, 23, dtype=str, stripper='|', splitter = '|')

###############################################################################
# Settings: what to plot

beamf_type = 'dics'  # can be lcmv or dics

# plot_type can be "corr" for correlation, "foc" for focality or "ori" for
# orientation error
plot_type = 'foc'

###############################################################################
# Read in the data and plot settings

data = read_data(beamf_type,
                 plot_type,
                 exclude_deep_vertices=False,
                 radius=0.055,
                 plot_deep_vertices=True)
title, kwargs = get_plotting_specs(beamf_type, plot_type)

###############################################################################
# Plot the different NORMALIZATIONS contrasted with each other

options = [
    'weight_norm=="unit-noise-gain" and normalize_fwd==False',
    'weight_norm=="none" and normalize_fwd==True',
    'weight_norm=="none" and normalize_fwd==False'
]
labels = [
    'Weight normalization', 'Lead field normalization', 'No normalization'
]
Example #3
0
# Create original BAT6
filename_og = root_dir + 'catalogs/BAT6_cat/BAT6_2012.txt'
name_og = pf.read_column(filename_og, 0, dtype=str, splitter='\t|')
redshift_og = pf.read_column(filename_og, 1, dtype=float, splitter='\t|')
redshift_og_mask = np.isfinite(redshift_og)
obs_redshift_og_masked = np.zeros(len(redshift_og))

# Extended BAT6 : eBAT6
file_eBAT6_obs = root_dir + 'catalogs/BAT6_cat/eBAT6_cat.txt'
obs_name = pf.read_column(file_eBAT6_obs,
                          0,
                          stripper='|',
                          splitter='|',
                          dtype=str)
obs_redshift = pf.read_column(file_eBAT6_obs, 1, stripper='|', splitter='|')
obs_redshift2 = pf.read_data(file_eBAT6_obs, 1, stripper='|', splitter='|')
obs_redshift_mask = np.isfinite(obs_redshift)
obs_redshift_masked = np.zeros(len(obs_redshift))
obs_redshift_masked = obs_redshift[obs_redshift_mask]

file_Swift_obs = root_dir + 'catalogs/Swift_cat/Swift_pflx_cat.txt'
obs_name_S2 = pf.read_column(file_Swift_obs, 0, dtype=str)
obs_name_S = []
for i in range(len(obs_name_S2)):
    if int(obs_name_S2[i][:2]) <= 14:
        obs_name_S.append(obs_name_S2[i])
obs_name_S = np.asarray(obs_name_S).astype(str)

file_Swift_obsb = root_dir + 'catalogs/Swift_cat/Swift_cat.txt'
obs_name_S2b = pf.read_column(file_Swift_obsb, 0, dtype=str)
obs_name_Sb = []
Example #4
0
import config
from plotting_functions import get_plotting_specs, scatter_plot, read_data

###############################################################################
# Settings: what to plot

beamf_type = 'dics'  # can be lcmv or dics

# plot_type can be "corr" for correlation, "foc" for focality or "ori" for
# orientation error
plot_type = 'foc'

###############################################################################
# Read in the data and plotting settings

data = read_data(beamf_type, plot_type)
title, kwargs = get_plotting_specs(beamf_type, plot_type)

###############################################################################
# WEIGHT NORMALIZATION

base = 'weight_norm=="unit-noise-gain" and normalize_fwd==False and %s'

if beamf_type == 'lcmv':
    options = [
        base % 'inversion=="matrix" and reduce_rank==False',
        base % 'inversion=="matrix" and reduce_rank==True',
        base % 'inversion=="single"',
        base % 'inversion=="matrix" and reduce_rank==False and \
               pick_ori=="none"'
    ]
import config
from plotting_functions import get_plotting_specs, scatter_plot, read_data

###############################################################################
# Settings: what to plot

beamf_type = 'dics'  # can be lcmv or dics

# plot_type can be "corr" for correlation, "foc" for focality or "ori" for
# orientation error
plot_type = 'foc'

###############################################################################
# Read in the data and plotting settings
select_vertices = 'shallow'  # 'deep', 'shallow', or None
data = read_data(beamf_type, plot_type, select_vertices)
title, kwargs = get_plotting_specs(beamf_type, plot_type, select_vertices)

###############################################################################
# WEIGHT vs. LEAD FIELD vs. NO NORMALIZATION

options = [
    'weight_norm=="unit-noise-gain" and normalize_fwd==False',
    'weight_norm=="none" and normalize_fwd==True',
    'weight_norm=="none" and normalize_fwd==False'
]

labels = [
    'Weight normalization', 'Lead field normalization', 'No normalization'
]
from plotting_functions import (get_plotting_specs, scatter_plot, read_data,
                                scatter_plot_hover)

###############################################################################
# Settings: what to plot

beamf_type = 'dics'  # can be lcmv or dics

# plot_type can be "corr" for correlation, "foc" for focality or "ori" for
# orientation error
plot_type = 'foc'

###############################################################################
# Read in the data and plot settings

data = read_data(beamf_type, plot_type, select_vertices='shallow')
title, kwargs = get_plotting_specs(beamf_type, plot_type)

###############################################################################
# Plot the different NORMALIZATIONS contrasted with each other

options = [
    'weight_norm=="unit-noise-gain" and normalize_fwd==False',
    'weight_norm=="none" and normalize_fwd==True',
    'weight_norm=="none" and normalize_fwd==False'
]
labels = [
    'Weight normalization', 'Lead field normalization', 'No normalization'
]
colors = [config.cols['orchid'], config.cols['sky'], config.cols['spring']]
full_title = (title % 'Normalization')
Example #7
0
import plotting_functions as pf
#from astroML.plotting import hist
from scipy.stats import chi2
from scipy import interpolate
# plt.style.use('ggplot')
#plt.style.use('presentation')

matplotlib.rc('font', **{'family': 'serif', 'serif': ['Palatino']})
matplotlib.rc('text', usetex=False)

filename = 'GBM_cat_complete.txt'
verbose = False

peak_flux_1024_nd = pf.read_data(filename,
                                 34,
                                 stripper='|',
                                 splitter='|',
                                 single_err=True)  # Batse flux (50-300 keV)
pflx_band_alpha_nd = pf.read_data(filename, 85, stripper='|', splitter='|')
pflx_band_beta_nd = pf.read_data(filename, 88, stripper='|', splitter='|')

fig = plt.figure(figsize=(12, 10), tight_layout=True)
axa = fig.add_subplot(211)
axb = fig.add_subplot(212, sharex=axa)
pflx_band_alpha_nd[0] = -pflx_band_alpha_nd[0]
pflx_band_beta_nd[0] = -pflx_band_beta_nd[0]
pf.scatter_incomplete_ndarray(axa,
                              peak_flux_1024_nd,
                              pflx_band_alpha_nd,
                              color='k',
                              alpha=0.9,
Example #8
0
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
import plotting_functions as pf
from matplotlib.transforms import blended_transform_factory
plt.style.use('ggplot')



fig = plt.figure()
ax = fig.add_subplot(111)
root_dir = '/nethome/palmerio/1ere_annee/Frederic/GRB_population_code/Model_outputs/'

filename = root_dir +'run_LIA/EpGBM_constraint.dat'

Ep_bins = pf.read_data(filename, 0)
Ep_hist_mod = pf.read_data(filename, 1)
Ep_hist_obs = pf.read_data(filename, 2)
x=np.linspace(1.,4., 500)
y = max(Ep_hist_obs) * pf.gaussian(x, 2.25, 0.35)
y2 = max(Ep_hist_obs) * pf.gaussian(x, 2.25, 0.375)

ep = np.linspace(1,4, 100)
ep_gauss = pf.gaussian(ep, 2.2, 0.4)*max(Ep_hist_obs)

ax.plot(Ep_bins, Ep_hist_obs, label = 'Observations')
#ax.plot(Ep_bins, Ep_hist_mod, label = 'MC simulation')
#ax.plot(ep, ep_gauss, ls=':', lw=2)
ax.plot(x,y, label='gaussian')
ax.plot(x,y2, label='gaussian2')
ax.legend(loc='best')