def train_ppo_only(**kwargs): """Train a policy with no curriculum strategy, only the training algo. """ problem = kwargs["problem"]; initial_policy = kwargs["initial_policy"]; goal_state = kwargs["goal_state"]; full_start_dist = kwargs["full_start_dist"]; N_new, N_old = kwargs["N_new"], kwargs["N_old"]; R_min, R_max = kwargs["R_min"], kwargs["R_max"]; num_iters = kwargs["num_iters"]; num_ppo_iters = kwargs["num_ppo_iters"]; curriculum_strategy = kwargs["curriculum_strategy"]; train_algo = kwargs["train_algo"]; start_distribution = kwargs["start_distribution"]; debug = kwargs["debug"]; data_logger = kwargs["data_logger"]; pi_i = initial_policy overall_perf = list() ppo_lens, ppo_rews = list(), list() perf_metric = 0.0 i = 0 ppo_iter_count = 0; pi_i.save_model(MODEL_DIR, iteration=i); while i < num_iters*num_ppo_iters: # while perf_metric < args.finish_threshold and i < num_iters*num_ppo_iters: print('Training Iteration %d' % i, flush=True) data_logger.update_indices({"overall_iter": i, "ppo_iter": ppo_iter_count}) pi_i, rewards_map, ep_mean_lens, ep_mean_rews = train_step(full_start_dist, pi_i, train_algo, problem, num_ppo_iters=num_ppo_iters) ppo_lens.extend(ep_mean_lens) ppo_rews.extend(ep_mean_rews) perf_metric = evaluate(pi_i, full_start_dist, problem, debug=debug, figfile=os.path.join(FIGURES_DIR, 'eval_iter_%d' % i)) overall_perf.append(perf_metric) data_logger.add_rows({'overall_perf': [perf_metric], 'ppo_perf': [perf_metric], 'ppo_lens': ep_mean_lens, 'ppo_rews': ep_mean_rews}, update_indices=['overall_iter', 'ppo_iter']) if debug: plot_performance(range(len(overall_perf)), overall_perf, ylabel=r'% Successful Starts', xlabel='Iteration', figfile=os.path.join(FIGURES_DIR, 'overall_perf')) print('[Overall Iter %d]: perf_metric = %.2f' % (i, perf_metric)); # Incrementing our algorithm's loop counter. # Here, these are the same since the algorithm is PPO itself. ppo_iter_count += num_ppo_iters; i += num_ppo_iters; data_logger.save_to_file(); pi_i.save_model(MODEL_DIR, iteration=i); return pi_i
def train_gridwise(**kwargs): """Train a policy with a specific curriculum strategy (backward reachable, etc), policy training method (trpo, ppo, etc), and start state sampling strategy (uniform, weighted by value function, etc). """ problem = kwargs["problem"]; initial_policy = kwargs["initial_policy"]; goal_state = kwargs["goal_state"]; full_start_dist = kwargs["full_start_dist"]; N_new, N_old = kwargs["N_new"], kwargs["N_old"]; R_min, R_max = kwargs["R_min"], kwargs["R_max"]; num_iters = kwargs["num_iters"]; num_ppo_iters = kwargs["num_ppo_iters"]; curriculum_strategy = kwargs["curriculum_strategy"]; train_algo = kwargs["train_algo"]; #start_distribution = kwargs["start_distribution"]; start_distribution = uniform debug = kwargs["debug"]; data_logger = kwargs["data_logger"]; # Keyword arguments for the curriculum strategy. curric_kwargs = defaultdict(lambda: None) curric_kwargs["debug"] = debug if curriculum_strategy == backward_reachable: br_engine = BackreachEngine() br_engine.reset_variables(problem, os.path.join(FIGURES_DIR, '')) curric_kwargs['br_engine'] = br_engine curric_kwargs['curr_train_iter'] = 0 curric_kwargs['brs_sample'] = args.brs_sample curric_kwargs['variation'] = args.variation curric_kwargs['problem'] = problem # Not used in algorithm, only for visualization. all_starts = [goal_state] old_starts = [goal_state] starts = [goal_state] pi_i = initial_policy overall_perf, overall_area = list(), list() perf_metric = 0.0 i = 0 pi_i.save_model(MODEL_DIR, iteration=i); while i < num_iters: # while perf_metric < args.finish_threshold and i < num_iters: print('Training Iteration %d' % i, flush=True); data_logger.update_indices({"overall_iter": i}) if 'curr_train_iter' in curric_kwargs: curric_kwargs['curr_train_iter'] = i; # I've split apart the following call into two separate ones. # new_starts = curriculum_strategy(starts, N_new, problem, **curric_kwargs) if curriculum_strategy == backward_reachable: update_back_rectangle(delta_t=0.1, **curric_kwargs) #data_logger.save_to_npy('brs_targets', starts); pct_successful = 0.0; iter_count = 0; ppo_perf, ppo_lens, ppo_rews = list(), list(), list() # Think of this as "while (haven't passed this grade)" while pct_successful < 0.5: data_logger.update_indices({"ppo_iter": iter_count}) if curriculum_strategy == backward_reachable: new_starts = sample_from_back_rectangle(N_new, **curric_kwargs); ########################## haven't finished the visualization part for rectangle ########################## # if debug: # br_engine.visualize_grids(os.path.join(FIGURES_DIR, ''), '_iter_%d_ppo_iter_%d' % (i, iter_count)) # # if debug: # visualize_starts(new_starts, problem, # figfile=os.path.join(FIGURES_DIR, 'curric_starts_iter_%d_ppo_iter_%d' % (i, iter_count))) ########################## haven't finished the visualization part for rectangle ########################## if args.variation == 2 and br_engine.check_membership(np.array([problem.env.unwrapped.start_state])): print('Variation 2 condition train.py!', flush=True) from_replay = list() starts = [problem.env.unwrapped.start_state] else: from_replay = sample(old_starts, size=N_old) starts = new_starts + from_replay ########################## haven't finished the visualization part for rectangle ########################## if debug: visualize_starts(new_starts, problem, old_starts=from_replay, old_start_color='orange', old_start_name='Replay Starts', figfile=os.path.join(FIGURES_DIR, 'replay_and_curric_starts_iter_%d_ppo_iter_%d' % (i, iter_count))) visualize_starts(None, problem, old_starts=all_starts, old_start_color='grey', old_start_name='Old Starts', old_start_alpha=0.2, with_arrows=False, figfile=os.path.join(FIGURES_DIR, 'previous_starts_iter_%d_ppo_iter_%d' % (i, iter_count))) ########################## haven't finished the visualization part for rectangle ########################## a = [1./len(starts)]*len(starts) #rho_i = list(zip(starts, start_distribution(starts))) rho_i = list(zip(starts, a)) pi_i, rewards_map, ep_mean_lens, ep_mean_rews = train_step(rho_i, pi_i, train_algo, problem, num_ppo_iters=num_ppo_iters) ########################## haven't finished the visualization part for rectangle ########################## if debug: if problem.env_name == 'DrivingOrigin-v0': visualize_starts(starts, problem, rewards_map=rewards_map, figfile=os.path.join(FIGURES_DIR, 'start_rews_iter_%d_ppo_iter_%d' % (i, iter_count))) visualize_rollouts([sample(starts)], pi_i, problem, figfile=os.path.join(FIGURES_DIR, 'rollouts_iter_%d_ppo_iter_%d' % (i, iter_count))) ########################## haven't finished the visualization part for rectangle ########################## data_logger.save_to_npy('curr_starts', starts); all_starts.extend(starts) total_unique_starts = len(dedupe_list_of_np_arrays(starts)) starts = select(starts, rewards_map, R_min, R_max, problem) successful_starts = len(starts) pct_successful = float(successful_starts)/total_unique_starts; ppo_perf.append(pct_successful*100.) ppo_lens.extend(ep_mean_lens) ppo_rews.extend(ep_mean_rews) data_logger.add_rows({'ppo_perf': [pct_successful], 'ppo_lens': ep_mean_lens, 'ppo_rews': ep_mean_rews}, update_indices=['ppo_iter']) if debug: plot_performance(range(len(ppo_perf)), ppo_perf, ylabel=r'% Successful Starts', xlabel=r'PPO Iteration ($\times %d$)' % num_ppo_iters, figfile=os.path.join(FIGURES_DIR, 'ppo_pct_succ_iter_%d' % i)) plot_performance(range(len(ppo_lens)), ppo_lens, ylabel=r'Avg. Episode Length', xlabel='PPO Iteration', figfile=os.path.join(FIGURES_DIR, 'ppo_avg_lens_iter_%d' % i)) plot_performance(range(len(ppo_rews)), ppo_rews, ylabel=r'Avg. Episode Reward', xlabel='PPO Iteration', figfile=os.path.join(FIGURES_DIR, 'ppo_avg_rews_iter_%d' % i)) data_logger.save_to_npy('all_starts', all_starts); data_logger.save_to_npy('old_starts', old_starts); data_logger.save_to_npy('selected_starts', starts); data_logger.save_to_npy('new_starts', new_starts); data_logger.save_to_npy('from_replay', from_replay); iter_count += num_ppo_iters; print('[PPO Iter %d]: %.2f%% Successful Starts (%d / %d)' % (iter_count, pct_successful*100., successful_starts, total_unique_starts)); # This final update is so we get the last iter_count correctly after jumping out of the while loop. data_logger.update_indices({"ppo_iter": iter_count}) # Ok, we've graduated! old_starts.extend(starts) perf_metric, overall_reward = evaluate(pi_i, full_start_dist, problem, debug=debug, figfile=os.path.join(FIGURES_DIR, 'eval_iter_%d' % i)) # Format is (min_x, max_x, min_y, max_y) all_starts_bbox = bounding_box(all_starts) min_x = problem.state_space.low[X_IDX] max_x = problem.state_space.high[X_IDX] min_y = problem.state_space.low[Y_IDX] max_y = problem.state_space.high[Y_IDX] area_coverage = bounding_box_area(all_starts_bbox) / bounding_box_area((min_x, max_x, min_y, max_y)) overall_perf.append(perf_metric) overall_area.append(area_coverage*100.) data_logger.add_rows({'overall_perf': [perf_metric], 'overall_area': [area_coverage], 'overall_reward': [overall_reward]}) if debug: plot_performance(range(len(overall_perf)), overall_perf, ylabel=r'% Successful Starts', xlabel='Iteration', figfile=os.path.join(FIGURES_DIR, 'overall_perf')) plot_performance(range(len(overall_area)), overall_area, ylabel=r'% State Space Sampled', xlabel='Iteration', figfile=os.path.join(FIGURES_DIR, 'overall_area')) print('[Overall Iter %d]: perf_metric = %.2f | Area Coverage = %.2f%%' % (i, perf_metric, area_coverage*100.)); # Incrementing our algorithm's loop counter. i += 1; data_logger.save_to_file(); pi_i.save_model(MODEL_DIR, iteration=i); # Done! if curriculum_strategy == backward_reachable: br_engine.stop(); del br_engine; return pi_i
def train_pointwise(**kwargs): """Train a policy with a specific curriculum strategy (random, etc), policy training method (trpo, ppo, etc), and start state sampling strategy (uniform, weighted by value function, etc). """ problem = kwargs["problem"]; initial_policy = kwargs["initial_policy"]; goal_state = kwargs["goal_state"]; full_start_dist = kwargs["full_start_dist"]; N_new, N_old = kwargs["N_new"], kwargs["N_old"]; R_min, R_max = kwargs["R_min"], kwargs["R_max"]; num_iters = kwargs["num_iters"]; num_ppo_iters = kwargs["num_ppo_iters"]; curriculum_strategy = kwargs["curriculum_strategy"]; train_algo = kwargs["train_algo"]; start_distribution = kwargs["start_distribution"]; debug = kwargs["debug"]; data_logger = kwargs["data_logger"]; # Keyword arguments for the curriculum strategy. curric_kwargs = defaultdict(lambda: None) # Not used in algorithm, only for visualization. all_starts = [goal_state] old_starts = [goal_state] starts = [goal_state] pi_i = initial_policy overall_perf, overall_area = list(), list() ppo_perf, ppo_lens, ppo_rews = list(), list(), list() perf_metric = 0.0 i = 0 ppo_iter_count = 0; pi_i.save_model(MODEL_DIR, iteration=i); while i < num_iters: # while perf_metric < args.finish_threshold and i < num_iters: print('Training Iteration %d' % i, flush=True) data_logger.update_indices({"overall_iter": i, "ppo_iter": ppo_iter_count}) new_starts = curriculum_strategy(starts, N_new, problem) if debug and len(new_starts) > 0: visualize_starts(new_starts, problem, figfile=os.path.join(FIGURES_DIR, 'curric_starts_iter_%d' % i)) from_replay = sample(old_starts, size=N_old) starts = new_starts + from_replay if debug: visualize_starts(new_starts, problem, old_starts=from_replay, old_start_color='orange', old_start_name='Replay Starts', figfile=os.path.join(FIGURES_DIR, 'replay_and_curric_starts_iter_%d' % i)) visualize_starts(None, problem, old_starts=all_starts, old_start_color='grey', old_start_name='Old Starts', figfile=os.path.join(FIGURES_DIR, 'previous_starts_iter_%d' % i)) rho_i = list(zip(starts, start_distribution(starts))) pi_i, rewards_map, ep_mean_lens, ep_mean_rews = train_step(rho_i, pi_i, train_algo, problem, num_ppo_iters=num_ppo_iters) if debug: if problem.env_name == 'DrivingOrigin-v0': visualize_starts(starts, problem, rewards_map=rewards_map, figfile=os.path.join(FIGURES_DIR, 'start_rews_iter_%d' % i)) visualize_rollouts([sample(starts)], pi_i, problem, figfile=os.path.join(FIGURES_DIR, 'rollouts_iter_%d' % i)) data_logger.save_to_npy('curr_starts', starts); all_starts.extend(starts) total_unique_starts = len(dedupe_list_of_np_arrays(starts)) starts = select(starts, rewards_map, R_min, R_max, problem) successful_starts = len(starts) pct_successful = float(successful_starts)/total_unique_starts; old_starts.extend(starts) ppo_perf.append(pct_successful*100.) ppo_lens.extend(ep_mean_lens) ppo_rews.extend(ep_mean_rews) if debug: plot_performance(range(len(ppo_perf)), ppo_perf, ylabel=r'% Successful Starts', xlabel=r'PPO Iteration ($\times %d$)' % num_ppo_iters, figfile=os.path.join(FIGURES_DIR, 'ppo_pct_succ_iter_%d' % i)) plot_performance(range(len(ppo_lens)), ppo_lens, ylabel=r'Avg. Episode Length', xlabel='PPO Iteration', figfile=os.path.join(FIGURES_DIR, 'ppo_avg_lens_iter_%d' % i)) plot_performance(range(len(ppo_rews)), ppo_rews, ylabel=r'Avg. Episode Reward', xlabel='PPO Iteration', figfile=os.path.join(FIGURES_DIR, 'ppo_avg_rews_iter_%d' % i)) data_logger.save_to_npy('all_starts', all_starts); data_logger.save_to_npy('old_starts', old_starts); data_logger.save_to_npy('selected_starts', starts); data_logger.save_to_npy('new_starts', new_starts); data_logger.save_to_npy('from_replay', from_replay); ppo_iter_count += num_ppo_iters; perf_metric = evaluate(pi_i, full_start_dist, problem, debug=debug, figfile=os.path.join(FIGURES_DIR, 'eval_iter_%d' % i)) # Format is (min_x, max_x, min_y, max_y) all_starts_bbox = bounding_box(all_starts) min_x = problem.state_space.low[X_IDX] max_x = problem.state_space.high[X_IDX] min_y = problem.state_space.low[Y_IDX] max_y = problem.state_space.high[Y_IDX] area_coverage = bounding_box_area(all_starts_bbox) / bounding_box_area((min_x, max_x, min_y, max_y)) overall_perf.append(perf_metric) overall_area.append(area_coverage*100.) data_logger.add_rows({'overall_perf': [perf_metric], 'overall_area': [area_coverage], 'ppo_perf': [pct_successful], 'ppo_lens': ep_mean_lens, 'ppo_rews': ep_mean_rews}, update_indices=['ppo_iter']) if debug: plot_performance(range(len(overall_perf)), overall_perf, ylabel=r'% Successful Starts', xlabel='Iteration', figfile=os.path.join(FIGURES_DIR, 'overall_perf')) plot_performance(range(len(overall_area)), overall_area, ylabel=r'% State Space Sampled', xlabel='Iteration', figfile=os.path.join(FIGURES_DIR, 'overall_area')) print('[Overall Iter %d]: perf_metric = %.2f | Area Coverage = %.2f%%' % (i, perf_metric, area_coverage*100.)); # Incrementing our algorithm's loop counter. i += 1; data_logger.save_to_file(); pi_i.save_model(MODEL_DIR, iteration=i); return pi_i
def train_gridwise(**kwargs): """Train a policy with a specific curriculum strategy (backward reachable, etc), policy training method (trpo, ppo, etc), and start state sampling strategy (uniform, weighted by value function, etc). """ problem = kwargs["problem"] initial_policy = kwargs["initial_policy"] goal_state = kwargs["goal_state"] full_start_dist = kwargs["full_start_dist"] N_new, N_old = kwargs["N_new"], kwargs["N_old"] R_min, R_max = kwargs["R_min"], kwargs["R_max"] num_iters = kwargs["num_iters"] num_ppo_iters = kwargs["num_ppo_iters"] curriculum_strategy = kwargs["curriculum_strategy"] train_algo = kwargs["train_algo"] start_distribution = kwargs["start_distribution"] debug = kwargs["debug"] data_logger = kwargs["data_logger"] gl_ppo_rewards = [] gl_overall_perf = [] # Keyword arguments for the curriculum strategy. curric_kwargs = defaultdict(lambda: None) curric_kwargs["debug"] = debug if curriculum_strategy == backward_reachable: br_engine = BackreachEngine() br_engine.reset_variables(problem, os.path.join(FIGURES_DIR, '')) curric_kwargs['br_engine'] = br_engine curric_kwargs['curr_train_iter'] = 0 curric_kwargs['brs_sample'] = args.brs_sample curric_kwargs['variation'] = args.variation curric_kwargs['problem'] = problem # Not used in algorithm, only for visualization. all_starts = [goal_state] old_starts = [goal_state] starts = [goal_state] pi_i = initial_policy overall_perf, overall_area = list(), list() perf_metric = 0.0 i = 0 pi_i.save_model(MODEL_DIR, iteration=i) # Note: here is a list contains distance for each algo iter --> [[size = 300]*num_iter] gl_samples_dist = [] # Note: open an figure object outside of loop plt.figure() plt.ion() while i < num_iters: # while perf_metric < args.finish_threshold and i < num_iters: print('Training Iteration %d' % i) data_logger.update_indices({"overall_iter": i}) if 'curr_train_iter' in curric_kwargs: curric_kwargs['curr_train_iter'] = i # I've split apart the following call into two separate ones. # new_starts = curriculum_strategy(starts, N_new, problem, **curric_kwargs) if curriculum_strategy == backward_reachable: update_backward_reachable_set(starts, **curric_kwargs) data_logger.save_to_npy('brs_targets', starts) pct_successful = 0.0 iter_count = 0 ppo_perf, ppo_lens, ppo_rews = list(), list(), list() sample_dis = list() # Think of this as "while (haven't passed this grade)" while pct_successful < 0.5: data_logger.update_indices({"ppo_iter": iter_count}) if curriculum_strategy == backward_reachable: new_starts = sample_from_backward_reachable_set( N_new, **curric_kwargs) if debug: br_engine.visualize_grids( os.path.join(FIGURES_DIR, ''), '_iter_%d_ppo_iter_%d' % (i, iter_count)) if debug: visualize_starts( new_starts, problem, figfile=os.path.join( FIGURES_DIR, 'curric_starts_iter_%d_ppo_iter_%d' % (i, iter_count))) if args.variation == 2 and br_engine.check_membership( np.array([problem.env.unwrapped.start_state])): print('Variation 2 condition train.py!') from_replay = list() starts = [problem.env.unwrapped.start_state] else: from_replay = sample(old_starts, size=N_old) starts = new_starts + from_replay if debug: visualize_starts( new_starts, problem, old_starts=from_replay, old_start_color='orange', old_start_name='Replay Starts', figfile=os.path.join( FIGURES_DIR, 'replay_and_curric_starts_iter_%d_ppo_iter_%d' % (i, iter_count))) visualize_starts(None, problem, old_starts=all_starts, old_start_color='grey', old_start_name='Old Starts', old_start_alpha=0.2, with_arrows=False, figfile=os.path.join( FIGURES_DIR, 'previous_starts_iter_%d_ppo_iter_%d' % (i, iter_count))) rho_i = list(zip(starts, start_distribution(starts))) pi_i, rewards_map, ep_mean_lens, ep_mean_rews = train_step( rho_i, pi_i, train_algo, problem, num_ppo_iters=num_ppo_iters) # Note: here we compute distance between samples' pos and start's pos in one algo iter for ind in range(len(starts)): tmp_p1 = (starts[ind][0], starts[ind][2]) tmp_p2 = (full_start_dist[0][0][0], full_start_dist[0][0][2]) sample_dis.append(Euclid_dis(tmp_p1, tmp_p2)) if debug: if problem.env_name == 'DrivingOrigin-v0': visualize_starts(starts, problem, rewards_map=rewards_map, figfile=os.path.join( FIGURES_DIR, 'start_rews_iter_%d_ppo_iter_%d' % (i, iter_count))) visualize_rollouts( [sample(starts)], pi_i, problem, figfile=os.path.join( FIGURES_DIR, 'rollouts_iter_%d_ppo_iter_%d' % (i, iter_count))) data_logger.save_to_npy('curr_starts', starts) all_starts.extend(starts) total_unique_starts = len(dedupe_list_of_np_arrays(starts)) starts = select(starts, rewards_map, R_min, R_max, problem) successful_starts = len(starts) pct_successful = float(successful_starts) / total_unique_starts ppo_perf.append(pct_successful * 100.) ppo_lens.extend(ep_mean_lens) ppo_rews.extend(ep_mean_rews) data_logger.add_rows( { 'ppo_perf': [pct_successful], 'ppo_lens': ep_mean_lens, 'ppo_rews': ep_mean_rews }, update_indices=['ppo_iter']) if debug: plot_performance( range(len(ppo_perf)), ppo_perf, ylabel=r'% Successful Starts', xlabel=r'PPO Iteration ($\times %d$)' % num_ppo_iters, figfile=os.path.join(FIGURES_DIR, 'ppo_pct_succ_iter_%d' % i)) plot_performance(range(len(ppo_lens)), ppo_lens, ylabel=r'Avg. Episode Length', xlabel='PPO Iteration', figfile=os.path.join( FIGURES_DIR, 'ppo_avg_lens_iter_%d' % i)) plot_performance(range(len(ppo_rews)), ppo_rews, ylabel=r'Avg. Episode Reward', xlabel='PPO Iteration', figfile=os.path.join( FIGURES_DIR, 'ppo_avg_rews_iter_%d' % i)) # NOTE: modified for save global data for it in range(len(ppo_rews)): gl_ppo_rewards.append(ppo_rews[it]) data_logger.save_to_npy('all_starts', all_starts) data_logger.save_to_npy('old_starts', old_starts) data_logger.save_to_npy('selected_starts', starts) data_logger.save_to_npy('new_starts', new_starts) data_logger.save_to_npy('from_replay', from_replay) iter_count += num_ppo_iters print('[PPO Iter %d]: %.2f%% Successful Starts (%d / %d)' % (iter_count, pct_successful * 100., successful_starts, total_unique_starts)) # This final update is so we get the last iter_count correctly after jumping out of the while loop. data_logger.update_indices({"ppo_iter": iter_count}) # Ok, we've graduated! old_starts.extend(starts) perf_metric, rollout_count = evaluate(pi_i, full_start_dist, problem, debug=debug, figfile=os.path.join( FIGURES_DIR, 'eval_iter_%d' % i)) # Note: here I save trained policy in each algo iter into pk file. # pkl.dump(pi_i, open(os.path.join(POLICY_DIR, 'policy_iter_%d' % i), 'wb')) # Format is (min_x, max_x, min_y, max_y) all_starts_bbox = bounding_box(all_starts) min_x = problem.state_space.low[X_IDX] max_x = problem.state_space.high[X_IDX] min_y = problem.state_space.low[Y_IDX] max_y = problem.state_space.high[Y_IDX] area_coverage = bounding_box_area(all_starts_bbox) / bounding_box_area( (min_x, max_x, min_y, max_y)) overall_perf.append(perf_metric) overall_area.append(area_coverage * 100.) data_logger.add_rows({ 'overall_perf': [perf_metric], 'overall_area': [area_coverage] }) # NOTE: modified for save global data gl_overall_perf = overall_perf gl_overall_area = overall_area gl_samples_dist.append(sample_dis) # NOTE: show the samples distribution stage by stage if i > 0 and not (i + 1) % 5: plt.cla() show_dis = [] for ind in range(5 * (i // 5), len(gl_samples_dist)): show_dis.extend(gl_samples_dist[ind]) sns_plot = sns.distplot(show_dis, rug=True) sns_plot.figure.savefig(FIGURES_DIR + '/dist_iter' + str(i) + '.png') print("saving the distance plot") # sns.distplot(show_dis, rug=True) #print("showing the distance distribution") plt.pause(0.1) if debug: plot_performance(range(len(overall_perf)), overall_perf, ylabel=r'% Successful Starts', xlabel='Iteration', figfile=os.path.join(FIGURES_DIR, 'overall_perf')) plot_performance(range(len(overall_area)), overall_area, ylabel=r'% State Space Sampled', xlabel='Iteration', figfile=os.path.join(FIGURES_DIR, 'overall_area')) print( '[Overall Iter %d]: perf_metric = %.2f | Area Coverage = %.2f%%' % (i, perf_metric, area_coverage * 100.)) # Incrementing our algorithm's loop counter. i += 1 data_logger.save_to_file() pi_i.save_model(MODEL_DIR, iteration=i) # Done! # NOTE: global plotting performance plot_performance(range(len(gl_ppo_rewards)), gl_ppo_rewards, ylabel=r'Avg Reward per training step', xlabel='Iteration', figfile=os.path.join(FIGURES_DIR, 'global_ppo_rewards'), pickle=True) plot_performance(range(len(gl_overall_perf)), gl_overall_perf, ylabel=r'Avg Eval Reward from start state', xlabel='Iteration', figfile=os.path.join(FIGURES_DIR, 'global_overall_perf'), pickle=True) plot_performance(range(len(gl_overall_area)), gl_overall_area, ylabel=r'State Space Sampled', xlabel='Iteration', figfile=os.path.join(FIGURES_DIR, 'gl_overall_area'), pickle=True) if curriculum_strategy == backward_reachable: br_engine.stop() del br_engine plt.ioff() return pi_i