Example #1
0
    def find_opt_ratio(pblm):
        """
        script to help find the correct value for the ratio threshold

            >>> from ibeis.algo.verif.vsone import *  # NOQA
            >>> pblm = OneVsOneProblem.from_empty('PZ_PB_RF_TRAIN')
            >>> pblm = OneVsOneProblem.from_empty('GZ_Master1')
        """
        # Find best ratio threshold
        pblm.load_samples()
        infr = pblm.infr
        edges = ut.emap(tuple, pblm.samples.aid_pairs.tolist())
        task = pblm.samples['match_state']
        pos_idx = task.class_names.tolist().index(POSTV)

        config = {'ratio_thresh': 1.0, 'sv_on': False}
        matches = infr._exec_pairwise_match(edges, config)

        import plottool_ibeis as pt
        pt.qtensure()
        thresholds = np.linspace(0, 1.0, 100)
        pos_truth = task.y_bin.T[pos_idx]
        ratio_fs = [m.local_measures['ratio'] for m in matches]

        aucs = []
        # Given the current correspondences: Find the optimal
        # correspondence threshold.
        for thresh in ut.ProgIter(thresholds, 'computing thresh'):
            scores = np.array([fs[fs < thresh].sum() for fs in ratio_fs])
            roc = sklearn.metrics.roc_auc_score(pos_truth, scores)
            aucs.append(roc)
        aucs = np.array(aucs)
        opt_auc = aucs.max()
        opt_thresh = thresholds[aucs.argmax()]

        if True:
            pt.plt.plot(thresholds, aucs, 'r-', label='')
            pt.plt.plot(opt_thresh,
                        opt_auc,
                        'ro',
                        label='L opt=%r' % (opt_thresh, ))
            pt.set_ylabel('auc')
            pt.set_xlabel('ratio threshold')
            pt.legend()
Example #2
0
def compare_data(Y_list_):
    import ibeis
    qreq_ = ibeis.testdata_qreq_(
        defaultdb='Oxford',
        a='oxford',
        p='smk:nWords=[64000],nAssign=[1],SV=[False],can_match_sameimg=True,dim_size=None'
    )
    qreq_.ensure_data()

    gamma1s = []
    gamma2s = []

    print(len(Y_list_))
    print(len(qreq_.daids))

    dinva = qreq_.dinva
    bady = []
    for Y in Y_list_:
        aid = Y.aid
        gamma1 = Y.gamma
        if aid in dinva.aid_to_idx:
            idx = dinva.aid_to_idx[aid]
            gamma2 = dinva.gamma_list[idx]
            gamma1s.append(gamma1)
            gamma2s.append(gamma2)
        else:
            bady += [Y]
            print(Y.nid)
            # print(Y.qual)

    # ibs = qreq_.ibs
    # z = ibs.annots([a.aid for a in bady])

    import plottool_ibeis as pt
    ut.qtensure()
    gamma1s = np.array(gamma1s)
    gamma2s = np.array(gamma2s)
    sortx = gamma1s.argsort()
    pt.plot(gamma1s[sortx], label='script')
    pt.plot(gamma2s[sortx], label='pipe')
    pt.legend()
Example #3
0
def _dev_iters_until_threshold():
    """
    INTERACTIVE DEVELOPMENT FUNCTION

    How many iterations of ewma until you hit the poisson / biniomal threshold

    This establishes a principled way to choose the threshold for the refresh
    criterion in my thesis. There are paramters --- moving parts --- that we
    need to work with: `a` the patience, `s` the span, and `mu` our ewma.

    `s` is a span paramter indicating how far we look back.

    `mu` is the average number of label-changing reviews in roughly the last
    `s` manual decisions.

    These numbers are used to estimate the probability that any of the next `a`
    manual decisions will be label-chanigng. When that probability falls below
    a threshold we terminate. The goal is to choose `a`, `s`, and the threshold
    `t`, such that the probability will fall below the threshold after a maximum
    of `a` consecutive non-label-chaning reviews. IE we want to tie the patience
    paramter (how far we look ahead) to how far we actually are willing to go.
    """
    import numpy as np
    import utool as ut
    import sympy as sym
    i = sym.symbols('i', integer=True, nonnegative=True, finite=True)
    # mu_i = sym.symbols('mu_i', integer=True, nonnegative=True, finite=True)
    s = sym.symbols('s', integer=True, nonnegative=True, finite=True)  # NOQA
    thresh = sym.symbols('tau', real=True, nonnegative=True, finite=True)  # NOQA
    alpha = sym.symbols('alpha', real=True, nonnegative=True, finite=True)  # NOQA
    c_alpha = sym.symbols('c_alpha', real=True, nonnegative=True, finite=True)
    # patience
    a = sym.symbols('a', real=True, nonnegative=True, finite=True)

    available_subs = {
        a: 20,
        s: a,
        alpha: 2 / (s + 1),
        c_alpha: (1 - alpha),
    }

    def subs(expr, d=available_subs):
        """ recursive expression substitution """
        expr1 = expr.subs(d)
        if expr == expr1:
            return expr1
        else:
            return subs(expr1, d=d)

    # mu is either the support for the poisson distribution
    # or is is the p in the binomial distribution
    # It is updated at timestep i based on ewma, assuming each incoming responce is 0
    mu_0 = 1.0
    mu_i = c_alpha ** i

    # Estimate probability that any event will happen in the next `a` reviews
    # at time `i`.
    poisson_i = 1 - sym.exp(-mu_i * a)
    binom_i = 1 - (1 - mu_i) ** a

    # Expand probabilities to be a function of i, s, and a
    part = ut.delete_dict_keys(available_subs.copy(), [a, s])
    mu_i = subs(mu_i, d=part)
    poisson_i = subs(poisson_i, d=part)
    binom_i = subs(binom_i, d=part)

    if True:
        # ewma of mu at time i if review is always not label-changing (meaningful)
        mu_1 = c_alpha * mu_0  # NOQA
        mu_2 = c_alpha * mu_1  # NOQA

    if True:
        i_vals = np.arange(0, 100)
        mu_vals = np.array([subs(mu_i).subs({i: i_}).evalf() for i_ in i_vals])  # NOQA
        binom_vals = np.array([subs(binom_i).subs({i: i_}).evalf() for i_ in i_vals])  # NOQA
        poisson_vals = np.array([subs(poisson_i).subs({i: i_}).evalf() for i_ in i_vals])  # NOQA

        # Find how many iters it actually takes my expt to terminate
        thesis_draft_thresh = np.exp(-2)
        np.where(mu_vals < thesis_draft_thresh)[0]
        np.where(binom_vals < thesis_draft_thresh)[0]
        np.where(poisson_vals < thesis_draft_thresh)[0]

    sym.pprint(sym.simplify(mu_i))
    sym.pprint(sym.simplify(binom_i))
    sym.pprint(sym.simplify(poisson_i))

    # Find the thresholds that force termination after `a` reviews have passed
    # do this by setting i=a
    poisson_thresh = poisson_i.subs({i: a})
    binom_thresh = binom_i.subs({i: a})

    print('Poisson thresh')
    print(sym.latex(sym.Eq(thresh, poisson_thresh)))
    print(sym.latex(sym.Eq(thresh, sym.simplify(poisson_thresh))))

    poisson_thresh.subs({a: 115, s: 30}).evalf()

    sym.pprint(sym.Eq(thresh, poisson_thresh))
    sym.pprint(sym.Eq(thresh, sym.simplify(poisson_thresh)))

    print('Binomial thresh')
    sym.pprint(sym.simplify(binom_thresh))

    sym.pprint(sym.simplify(poisson_thresh.subs({s: a})))

    def taud(coeff):
        return coeff * 360

    if 'poisson_cache' not in vars():
        poisson_cache = {}
        binom_cache = {}

    S, A = np.meshgrid(np.arange(1, 150, 1), np.arange(0, 150, 1))

    import plottool_ibeis as pt
    SA_coords = list(zip(S.ravel(), A.ravel()))
    for sval, aval in ut.ProgIter(SA_coords):
        if (sval, aval) not in poisson_cache:
            poisson_cache[(sval, aval)] = float(poisson_thresh.subs({a: aval, s: sval}).evalf())
    poisson_zdata = np.array(
        [poisson_cache[(sval, aval)] for sval, aval in SA_coords]).reshape(A.shape)
    fig = pt.figure(fnum=1, doclf=True)
    pt.gca().set_axis_off()
    pt.plot_surface3d(S, A, poisson_zdata, xlabel='s', ylabel='a',
                      rstride=3, cstride=3,
                      zlabel='poisson', mode='wire', contour=True,
                      title='poisson3d')
    pt.gca().set_zlim(0, 1)
    pt.gca().view_init(elev=taud(1 / 16), azim=taud(5 / 8))
    fig.set_size_inches(10, 6)
    fig.savefig('a-s-t-poisson3d.png', dpi=300, bbox_inches=pt.extract_axes_extents(fig, combine=True))

    for sval, aval in ut.ProgIter(SA_coords):
        if (sval, aval) not in binom_cache:
            binom_cache[(sval, aval)] = float(binom_thresh.subs({a: aval, s: sval}).evalf())
    binom_zdata = np.array(
        [binom_cache[(sval, aval)] for sval, aval in SA_coords]).reshape(A.shape)
    fig = pt.figure(fnum=2, doclf=True)
    pt.gca().set_axis_off()
    pt.plot_surface3d(S, A, binom_zdata, xlabel='s', ylabel='a',
                      rstride=3, cstride=3,
                      zlabel='binom', mode='wire', contour=True,
                      title='binom3d')
    pt.gca().set_zlim(0, 1)
    pt.gca().view_init(elev=taud(1 / 16), azim=taud(5 / 8))
    fig.set_size_inches(10, 6)
    fig.savefig('a-s-t-binom3d.png', dpi=300, bbox_inches=pt.extract_axes_extents(fig, combine=True))

    # Find point on the surface that achieves a reasonable threshold

    # Sympy can't solve this
    # sym.solve(sym.Eq(binom_thresh.subs({s: 50}), .05))
    # sym.solve(sym.Eq(poisson_thresh.subs({s: 50}), .05))
    # Find a numerical solution
    def solve_numeric(expr, target, want, fixed, method=None, bounds=None):
        """
        Args:
            expr (Expr): symbolic expression
            target (float): numberic value
            fixed (dict): fixed values of the symbol

        expr = poisson_thresh
        expr.free_symbols
        fixed = {s: 10}

        solve_numeric(poisson_thresh, .05, {s: 30}, method=None)
        solve_numeric(poisson_thresh, .05, {s: 30}, method='Nelder-Mead')
        solve_numeric(poisson_thresh, .05, {s: 30}, method='BFGS')
        """
        import scipy.optimize
        # Find the symbol you want to solve for
        want_symbols = expr.free_symbols - set(fixed.keys())
        # TODO: can probably extend this to multiple params
        assert len(want_symbols) == 1, 'specify all but one var'
        assert want == list(want_symbols)[0]
        fixed_expr = expr.subs(fixed)
        def func(a1):
            expr_value = float(fixed_expr.subs({want: a1}).evalf())
            return (expr_value - target) ** 2
        # if method is None:
        #     method = 'Nelder-Mead'
        #     method = 'Newton-CG'
        #     method = 'BFGS'
        # Use one of the other params the startin gpoing
        a1 = list(fixed.values())[0]
        result = scipy.optimize.minimize(func, x0=a1, method=method, bounds=bounds)
        if not result.success:
            print('\n')
            print(result)
            print('\n')
        return result

    # Numeric measurments of thie line

    thresh_vals = [.001, .01, .05, .1, .135]
    svals = np.arange(1, 100)

    target_poisson_plots = {}
    for target in ut.ProgIter(thresh_vals, bs=False, freq=1):
        poisson_avals = []
        for sval in ut.ProgIter(svals, 'poisson', freq=1):
            expr = poisson_thresh
            fixed = {s: sval}
            want = a
            aval = solve_numeric(expr, target, want, fixed,
                                 method='Nelder-Mead').x[0]
            poisson_avals.append(aval)
        target_poisson_plots[target] = (svals, poisson_avals)

    fig = pt.figure(fnum=3)
    for target, dat in target_poisson_plots.items():
        pt.plt.plot(*dat, label='prob={}'.format(target))
    pt.gca().set_xlabel('s')
    pt.gca().set_ylabel('a')
    pt.legend()
    pt.gca().set_title('poisson')
    fig.set_size_inches(5, 3)
    fig.savefig('a-vs-s-poisson.png', dpi=300, bbox_inches=pt.extract_axes_extents(fig, combine=True))

    target_binom_plots = {}
    for target in ut.ProgIter(thresh_vals, bs=False, freq=1):
        binom_avals = []
        for sval in ut.ProgIter(svals, 'binom', freq=1):
            aval = solve_numeric(binom_thresh, target, a, {s: sval}, method='Nelder-Mead').x[0]
            binom_avals.append(aval)
        target_binom_plots[target] = (svals, binom_avals)

    fig = pt.figure(fnum=4)
    for target, dat in target_binom_plots.items():
        pt.plt.plot(*dat, label='prob={}'.format(target))
    pt.gca().set_xlabel('s')
    pt.gca().set_ylabel('a')
    pt.legend()
    pt.gca().set_title('binom')
    fig.set_size_inches(5, 3)
    fig.savefig('a-vs-s-binom.png', dpi=300, bbox_inches=pt.extract_axes_extents(fig, combine=True))

    # ----
    if True:

        fig = pt.figure(fnum=5, doclf=True)
        s_vals = [1, 2, 3, 10, 20, 30, 40, 50]
        for sval in s_vals:
            pp = poisson_thresh.subs({s: sval})

            a_vals = np.arange(0, 200)
            pp_vals = np.array([float(pp.subs({a: aval}).evalf()) for aval in a_vals])  # NOQA

            pt.plot(a_vals, pp_vals, label='s=%r' % (sval,))
        pt.legend()
        pt.gca().set_xlabel('a')
        pt.gca().set_ylabel('poisson prob after a reviews')
        fig.set_size_inches(5, 3)
        fig.savefig('a-vs-thresh-poisson.png', dpi=300, bbox_inches=pt.extract_axes_extents(fig, combine=True))

        fig = pt.figure(fnum=6, doclf=True)
        s_vals = [1, 2, 3, 10, 20, 30, 40, 50]
        for sval in s_vals:
            pp = binom_thresh.subs({s: sval})
            a_vals = np.arange(0, 200)
            pp_vals = np.array([float(pp.subs({a: aval}).evalf()) for aval in a_vals])  # NOQA
            pt.plot(a_vals, pp_vals, label='s=%r' % (sval,))
        pt.legend()
        pt.gca().set_xlabel('a')
        pt.gca().set_ylabel('binom prob after a reviews')
        fig.set_size_inches(5, 3)
        fig.savefig('a-vs-thresh-binom.png', dpi=300, bbox_inches=pt.extract_axes_extents(fig, combine=True))

        # -------

        fig = pt.figure(fnum=5, doclf=True)
        a_vals = [1, 2, 3, 10, 20, 30, 40, 50]
        for aval in a_vals:
            pp = poisson_thresh.subs({a: aval})
            s_vals = np.arange(1, 200)
            pp_vals = np.array([float(pp.subs({s: sval}).evalf()) for sval in s_vals])  # NOQA
            pt.plot(s_vals, pp_vals, label='a=%r' % (aval,))
        pt.legend()
        pt.gca().set_xlabel('s')
        pt.gca().set_ylabel('poisson prob')
        fig.set_size_inches(5, 3)
        fig.savefig('s-vs-thresh-poisson.png', dpi=300, bbox_inches=pt.extract_axes_extents(fig, combine=True))

        fig = pt.figure(fnum=5, doclf=True)
        a_vals = [1, 2, 3, 10, 20, 30, 40, 50]
        for aval in a_vals:
            pp = binom_thresh.subs({a: aval})
            s_vals = np.arange(1, 200)
            pp_vals = np.array([float(pp.subs({s: sval}).evalf()) for sval in s_vals])  # NOQA
            pt.plot(s_vals, pp_vals, label='a=%r' % (aval,))
        pt.legend()
        pt.gca().set_xlabel('s')
        pt.gca().set_ylabel('binom prob')
        fig.set_size_inches(5, 3)
        fig.savefig('s-vs-thresh-binom.png', dpi=300, bbox_inches=pt.extract_axes_extents(fig, combine=True))

    #---------------------
    # Plot out a table

    mu_i.subs({s: 75, a: 75}).evalf()
    poisson_thresh.subs({s: 75, a: 75}).evalf()

    sval = 50
    for target, dat in target_poisson_plots.items():
        slope = np.median(np.diff(dat[1]))
        aval = int(np.ceil(sval * slope))
        thresh = float(poisson_thresh.subs({s: sval, a: aval}).evalf())
        print('aval={}, sval={}, thresh={}, target={}'.format(aval, sval, thresh, target))

    for target, dat in target_binom_plots.items():
        slope = np.median(np.diff(dat[1]))
        aval = int(np.ceil(sval * slope))
Example #4
0
def flann_add_time_experiment():
    """
    builds plot of number of annotations vs indexer build time.

    TODO: time experiment

    CommandLine:
        python -m ibeis.algo.hots._neighbor_experiment --test-flann_add_time_experiment --db PZ_MTEST --show
        python -m ibeis.algo.hots._neighbor_experiment --test-flann_add_time_experiment --db PZ_Master0 --show
        utprof.py -m ibeis.algo.hots._neighbor_experiment --test-flann_add_time_experiment --show

        valgrind --tool=memcheck --suppressions=valgrind-python.supp python -m ibeis.algo.hots._neighbor_experiment --test-flann_add_time_experiment --db PZ_MTEST --no-with-reindex

    Example:
        >>> # DISABLE_DOCTEST
        >>> from ibeis.algo.hots._neighbor_experiment import *  # NOQA
        >>> import ibeis
        >>> #ibs = ibeis.opendb('PZ_MTEST')
        >>> result = flann_add_time_experiment()
        >>> # verify results
        >>> print(result)
        >>> ut.show_if_requested()

    """
    import ibeis
    import utool as ut
    import numpy as np
    import plottool_ibeis as pt

    def make_flann_index(vecs, flann_params):
        flann = pyflann.FLANN()
        flann.build_index(vecs, **flann_params)
        return flann

    db = ut.get_argval('--db')
    ibs = ibeis.opendb(db=db)

    # Input
    if ibs.get_dbname() == 'PZ_MTEST':
        initial = 1
        reindex_stride = 16
        addition_stride = 4
        max_ceiling = 120
    elif ibs.get_dbname() == 'PZ_Master0':
        #ibs = ibeis.opendb(db='GZ_ALL')
        initial = 32
        reindex_stride = 32
        addition_stride = 16
        max_ceiling = 300001
    else:
        assert False
    #max_ceiling = 32
    all_daids = ibs.get_valid_aids()
    max_num = min(max_ceiling, len(all_daids))
    flann_params = vt.get_flann_params()

    # Output
    count_list,  time_list_reindex  = [], []
    count_list2, time_list_addition = [], []

    # Setup
    #all_randomize_daids_ = ut.deterministic_shuffle(all_daids[:])
    all_randomize_daids_ = all_daids
    # ensure all features are computed
    ibs.get_annot_vecs(all_randomize_daids_)

    def reindex_step(count, count_list, time_list_reindex):
        daids    = all_randomize_daids_[0:count]
        vecs = np.vstack(ibs.get_annot_vecs(daids))
        with ut.Timer(verbose=False) as t:
            flann = make_flann_index(vecs, flann_params)  # NOQA
        count_list.append(count)
        time_list_reindex.append(t.ellapsed)

    def addition_step(count, flann, count_list2, time_list_addition):
        daids = all_randomize_daids_[count:count + 1]
        vecs = np.vstack(ibs.get_annot_vecs(daids))
        with ut.Timer(verbose=False) as t:
            flann.add_points(vecs)
        count_list2.append(count)
        time_list_addition.append(t.ellapsed)

    def make_initial_index(initial):
        daids = all_randomize_daids_[0:initial + 1]
        vecs = np.vstack(ibs.get_annot_vecs(daids))
        flann = make_flann_index(vecs, flann_params)
        return flann

    WITH_REINDEX = not ut.get_argflag('--no-with-reindex')
    if WITH_REINDEX:
        # Reindex Part
        reindex_lbl = 'Reindexing'
        _reindex_iter = range(1, max_num, reindex_stride)
        reindex_iter = ut.ProgressIter(_reindex_iter, lbl=reindex_lbl, freq=1)
        for count in reindex_iter:
            reindex_step(count, count_list, time_list_reindex)

    # Add Part
    flann = make_initial_index(initial)
    addition_lbl = 'Addition'
    _addition_iter = range(initial + 1, max_num, addition_stride)
    addition_iter = ut.ProgressIter(_addition_iter, lbl=addition_lbl)
    for count in addition_iter:
        addition_step(count, flann, count_list2, time_list_addition)

    print('---')
    print('Reindex took time_list_reindex %.2s seconds' % sum(time_list_reindex))
    print('Addition took time_list_reindex  %.2s seconds' % sum(time_list_addition))
    print('---')
    statskw = dict(precision=2, newlines=True)
    print('Reindex stats ' + ut.get_stats_str(time_list_reindex, **statskw))
    print('Addition stats ' + ut.get_stats_str(time_list_addition, **statskw))

    print('Plotting')

    #with pt.FigureContext:

    next_fnum = iter(range(0, 2)).next  # python3 PY3
    pt.figure(fnum=next_fnum())
    if WITH_REINDEX:
        pt.plot2(count_list, time_list_reindex, marker='-o', equal_aspect=False,
                 x_label='num_annotations', label=reindex_lbl + ' Time', dark=False)

    #pt.figure(fnum=next_fnum())
    pt.plot2(count_list2, time_list_addition, marker='-o', equal_aspect=False,
             x_label='num_annotations', label=addition_lbl + ' Time')

    pt
    pt.legend()
Example #5
0
def augment_nnindexer_experiment():
    """

    References:
        http://answers.opencv.org/question/44592/flann-index-training-fails-with-segfault/

    CommandLine:
        utprof.py -m ibeis.algo.hots._neighbor_experiment --test-augment_nnindexer_experiment
        python -m ibeis.algo.hots._neighbor_experiment --test-augment_nnindexer_experiment

        python -m ibeis.algo.hots._neighbor_experiment --test-augment_nnindexer_experiment --db PZ_MTEST --diskshow --adjust=.1 --save "augment_experiment_{db}.png" --dpath='.' --dpi=180 --figsize=9,6
        python -m ibeis.algo.hots._neighbor_experiment --test-augment_nnindexer_experiment --db PZ_Master0 --diskshow --adjust=.1 --save "augment_experiment_{db}.png" --dpath='.' --dpi=180 --figsize=9,6 --nosave-flann --show
        python -m ibeis.algo.hots._neighbor_experiment --test-augment_nnindexer_experiment --db PZ_Master0 --diskshow --adjust=.1 --save "augment_experiment_{db}.png" --dpath='.' --dpi=180 --figsize=9,6 --nosave-flann --show


        python -m ibeis.algo.hots._neighbor_experiment --test-augment_nnindexer_experiment --db PZ_Master0 --diskshow --adjust=.1 --save "augment_experiment_{db}.png" --dpath='.' --dpi=180 --figsize=9,6 --nosave-flann --no-api-cache --nocache-uuids

        python -m ibeis.algo.hots._neighbor_experiment --test-augment_nnindexer_experiment --db PZ_MTEST --show
        python -m ibeis.algo.hots._neighbor_experiment --test-augment_nnindexer_experiment --db PZ_Master0 --show

        # RUNS THE SEGFAULTING CASE
        python -m ibeis.algo.hots._neighbor_experiment --test-augment_nnindexer_experiment --db PZ_Master0 --show
        # Debug it
        gdb python
        run -m ibeis.algo.hots._neighbor_experiment --test-augment_nnindexer_experiment --db PZ_Master0 --show
        gdb python
        run -m ibeis.algo.hots._neighbor_experiment --test-augment_nnindexer_experiment --db PZ_Master0 --diskshow --adjust=.1 --save "augment_experiment_{db}.png" --dpath='.' --dpi=180 --figsize=9,6


    Example:
        >>> # DISABLE_DOCTEST
        >>> from ibeis.algo.hots._neighbor_experiment import *  # NOQA
        >>> # execute function
        >>> augment_nnindexer_experiment()
        >>> # verify results
        >>> ut.show_if_requested()

    """
    import ibeis
    # build test data
    #ibs = ibeis.opendb('PZ_MTEST')
    ibs = ibeis.opendb(defaultdb='PZ_Master0')
    if ibs.get_dbname() == 'PZ_MTEST':
        initial = 1
        addition_stride = 4
        max_ceiling = 100
    elif ibs.get_dbname() == 'PZ_Master0':
        initial = 128
        #addition_stride = 64
        #addition_stride = 128
        addition_stride = 256
        max_ceiling = 10000
        #max_ceiling = 4000
        #max_ceiling = 2000
        #max_ceiling = 600
    else:
        assert False
    all_daids = ibs.get_valid_aids(species='zebra_plains')
    qreq_ = ibs.new_query_request(all_daids, all_daids)
    max_num = min(max_ceiling, len(all_daids))

    # Clear Caches
    ibs.delete_flann_cachedir()
    neighbor_index_cache.clear_memcache()
    neighbor_index_cache.clear_uuid_cache(qreq_)

    # Setup
    all_randomize_daids_ = ut.deterministic_shuffle(all_daids[:])
    # ensure all features are computed

    nnindexer_list = []
    addition_lbl = 'Addition'
    _addition_iter = list(range(initial + 1, max_num, addition_stride))
    addition_iter = iter(ut.ProgressIter(_addition_iter, lbl=addition_lbl,
                                         freq=1, autoadjust=False))
    time_list_addition = []
    #time_list_reindex = []
    addition_count_list = []
    tmp_cfgstr_list = []

    #for _ in range(80):
    #    next(addition_iter)
    try:
        memtrack = ut.MemoryTracker(disable=False)
        for count in addition_iter:
            aid_list_ = all_randomize_daids_[0:count]
            # Request an indexer which could be an augmented version of an existing indexer.
            with ut.Timer(verbose=False) as t:
                memtrack.report('BEFORE AUGMENT')
                nnindexer_ = neighbor_index_cache.request_augmented_ibeis_nnindexer(qreq_, aid_list_)
                memtrack.report('AFTER AUGMENT')
            nnindexer_list.append(nnindexer_)
            addition_count_list.append(count)
            time_list_addition.append(t.ellapsed)
            tmp_cfgstr_list.append(nnindexer_.cfgstr)
            print('===============\n\n')
        print(ut.repr2(time_list_addition))
        print(ut.repr2(list(map(id, nnindexer_list))))
        print(ut.repr2(tmp_cfgstr_list))
        print(ut.repr2(list([nnindxer.cfgstr for nnindxer in nnindexer_list])))

        IS_SMALL = False

        if IS_SMALL:
            nnindexer_list = []
        reindex_label = 'Reindex'
        # go backwards for reindex
        _reindex_iter = list(range(initial + 1, max_num, addition_stride))[::-1]
        reindex_iter = ut.ProgressIter(_reindex_iter, lbl=reindex_label)
        time_list_reindex = []
        #time_list_reindex = []
        reindex_count_list = []

        for count in reindex_iter:
            print('\n+===PREDONE====================\n')
            # check only a single size for memory leaks
            #count = max_num // 16 + ((x % 6) * 1)
            #x += 1

            aid_list_ = all_randomize_daids_[0:count]
            # Call the same code, but force rebuilds
            memtrack.report('BEFORE REINDEX')
            with ut.Timer(verbose=False) as t:
                nnindexer_ = neighbor_index_cache.request_augmented_ibeis_nnindexer(
                    qreq_, aid_list_, force_rebuild=True, memtrack=memtrack)
            memtrack.report('AFTER REINDEX')
            ibs.print_cachestats_str()
            print('[nnindex.MEMCACHE] size(NEIGHBOR_CACHE) = %s' % (
                ut.get_object_size_str(neighbor_index_cache.NEIGHBOR_CACHE.items()),))
            print('[nnindex.MEMCACHE] len(NEIGHBOR_CACHE) = %s' % (
                len(neighbor_index_cache.NEIGHBOR_CACHE.items()),))
            print('[nnindex.MEMCACHE] size(UUID_MAP_CACHE) = %s' % (
                ut.get_object_size_str(neighbor_index_cache.UUID_MAP_CACHE),))
            print('totalsize(nnindexer) = ' + ut.get_object_size_str(nnindexer_))
            memtrack.report_type(neighbor_index_cache.NeighborIndex)
            ut.print_object_size_tree(nnindexer_, lbl='nnindexer_')
            if IS_SMALL:
                nnindexer_list.append(nnindexer_)
            reindex_count_list.append(count)
            time_list_reindex.append(t.ellapsed)
            #import cv2
            #import matplotlib as mpl
            #print(mem_top.mem_top(limit=30, width=120,
            #                      #exclude_refs=[cv2.__dict__, mpl.__dict__]
            #     ))
            print('L___________________\n\n\n')
        print(ut.repr2(time_list_reindex))
        if IS_SMALL:
            print(ut.repr2(list(map(id, nnindexer_list))))
            print(ut.repr2(list([nnindxer.cfgstr for nnindxer in nnindexer_list])))
    except KeyboardInterrupt:
            print('\n[train] Caught CRTL+C')
            resolution = ''
            from six.moves import input
            while not (resolution.isdigit()):
                print('\n[train] What do you want to do?')
                print('[train]     0 - Continue')
                print('[train]     1 - Embed')
                print('[train]  ELSE - Stop network training')
                resolution = input('[train] Resolution: ')
            resolution = int(resolution)
            # We have a resolution
            if resolution == 0:
                print('resuming training...')
            elif resolution == 1:
                ut.embed()

    import plottool_ibeis as pt

    next_fnum = iter(range(0, 1)).next  # python3 PY3
    pt.figure(fnum=next_fnum())
    if len(addition_count_list) > 0:
        pt.plot2(addition_count_list, time_list_addition, marker='-o', equal_aspect=False,
                 x_label='num_annotations', label=addition_lbl + ' Time')

    if len(reindex_count_list) > 0:
        pt.plot2(reindex_count_list, time_list_reindex, marker='-o', equal_aspect=False,
                 x_label='num_annotations', label=reindex_label + ' Time')

    pt.set_figtitle('Augmented indexer experiment')

    pt.legend()