Example #1
0
def plot3(w):

    # For the final graph we wish to override the default tick
    # intervals, so do not use w.plenv

    w.pladv(0)

    # Use standard viewport, and define X range from 0 to 360
    # degrees, Y range from -1.2 to 1.2.

    w.plvsta()
    w.plwind(0.0, 360.0, -1.2, 1.2)

    # Draw a box with ticks spaced 60 degrees apart in X, and 0.2 in Y.

    w.plcol0(1)
    w.plbox("bcnst", 60.0, 2, "bcnstv", 0.2, 2)

    # Superimpose a dashed line grid, with 1.5 mm marks and spaces.

    w.plstyl([1500], [1500])
    w.plcol0(2)
    w.plbox("g", 30.0, 0, "g", 0.2, 0)
    w.plstyl([], [])

    w.plcol0(3)
    w.pllab("Angle (degrees)", "sine", "#frPLplot Example 1 - Sine function")

    x = 3.6 * arange(101)
    y = sin((pi / 180.) * x)

    w.plcol0(4)
    w.plline(x, y)
    w.plflush()
Example #2
0
    def plotCurves(self):
        self.plot.clearWidget()

        # 1st plot
        indexes = numpy.arange(0, 360.1, 1.0)
        sine = numpy.sin(indexes * 3.14159 / 180.0)
        cosine = numpy.cos(indexes * 3.14159 / 180.0)

        plplot.pladv(0)
        plplot.plvpor(0.05, 0.95, 0.05, 0.45)
        plplot.plwind(0.0, 360.0, -1.2, 1.2)

	plplot.plcol0(2)
	plplot.plbox("bcnst", 0., 0, "bcnst", 0., 0)
	
	plplot.plcol0(1)
	plplot.plwidth(2)
	plplot.plline(indexes, sine)
	
	plplot.plcol0(3)
	plplot.plwidth(1)
	plplot.pllsty(2)
	plplot.plline(indexes, cosine)
	plplot.pllsty(1)

	plplot.plcol0(2)
	
	plplot.plmtex("t", 1., 0.5, 0.5, "Sines")

        # 2nd plot
        indexes = numpy.arange(-1.0, 1.0, 0.01)
        square = indexes * indexes
        cubic = square * indexes

	plplot.plvpor(0.05, 0.95, 0.55, 0.95)
	plplot.plwind(-1., 1., -1., 1.)
	
	plplot.plcol0(2)
	plplot.plbox("bcnst", 0., 0, "bcnst", 0., 0)
	
	plplot.plcol0(1)
	plplot.plwidth(2)
	plplot.plline(indexes, square)
	
	plplot.plcol0(3)
	plplot.plwidth(1)
	plplot.pllsty(2)
	plplot.plline(indexes, cubic)
	plplot.pllsty(1)
	
	plplot.plcol0(2)
	
	plplot.plmtex("t", 1., 0.5, 0.5, "Square & Cubic")

        self.update()
Example #3
0
def main(w):

    FCI_COMBINATIONS = 30
    w.plsfont(0, 0, 0)
    for index_fci in range(0, FCI_COMBINATIONS):
        family_index = index_fci % 5
        style_index = (index_fci / 5) % 3
        weight_index = ((index_fci / 5) / 3) % 2
        title = "Type 1 glyphs for family = " + family[
            family_index] + ", style = " + style[
                style_index] + ", weight = " + weight[weight_index]
        w.pladv(0)

        # Set up viewport and window

        w.plcol0(2)
        w.plvpor(0.1, 1.0, 0.1, 0.9)
        w.plwind(0.0, 1.0, 0.0, 1.0)

        # Draw the grid using w.plbox

        w.plbox("bcg", 1. / 16., 0, "bcg", 1. / 16., 0)

        # Write the digits below the frame

        w.plcol0(15)
        for i in range(16):
            w.plmtex("b", 1.5, ((i + 0.5) / 16.), 0.5, str(i))

        k = 0
        w.plmtex("t", 1.5, 0.5, 0.5, title)
        for i in range(16):

            # Write the digits to the left of the frame

            w.plmtex("lv", 1.0, (1.0 - (i + 0.5) / 16.), 1.0, str(16 * i))

            w.plsfont(family_index, style_index, weight_index)
            for j in range(16):
                x = (j + 0.5) / 16.
                y = 1. - (i + 0.5) / 16

                # Display the Type 1 glyph corresponding to k
                glyph_string = unichr(k).encode('utf-8')
                # Escape the escape.
                if glyph_string == "#":
                    glyph_string = "##"
                w.plptex(x, y, 1., 0., 0.5, glyph_string)
                k = k + 1
            w.plsfont(0, 0, 0)
Example #4
0
    def plotHistogram(self):

        def plfbox(x0, y0):
            x = numpy.array([x0, x0, x0 + 1.0, x0 + 1.0])
            y = numpy.array([0.0, y0, y0, 0.0])
            plplot.plfill(x, y)
            plplot.plcol0(1)
            plplot.pllsty(1)
            plplot.plline(x, y)

        self.plot.clearWidget();

        y0 = numpy.array([5, 15, 12, 24, 28, 30, 20, 8, 12, 3])
        pos = numpy.array([0.0, 0.25, 0.5, 0.75, 1.0])
        red = numpy.array([0.0, 0.25, 0.5, 1.0, 1.0])
        green = numpy.array([1.0, 0.5, 0.5, 0.5, 1.0])
        blue = numpy.array([1.0, 1.0, 0.5, 0.25, 0.0])

	plplot.pladv(0)
	plplot.plvsta()
	
	plplot.plcol0(2)
	
	plplot.plwind(1980.0, 1990.0, 0.0, 35.0)
	plplot.plbox("bc", 1.0, 0, "bcnv", 10.0, 0)
	plplot.plcol0(2)
	plplot.pllab("Year", "Widget Sales (millions)", "#frPLplot Example 12")

 	plplot.plscmap1l(1,pos,red,green,blue)

	for i in range(10):
            plplot.plcol1(i/9.0)
            plplot.plpsty(0)
            plfbox((1980. + i), y0[i])
            string = "%.0f" % (y0[i])
            plplot.plptex((1980. + i + .5), (y0[i] + 1.), 1.0, 0.0, .5, string)
            string = "%d" % (1980 + i)
            plplot.plmtex("b", 1.0, ((i + 1) * .1 - .05), 0.5, string)
       
        self.update()
Example #5
0
import sys
import plplot as w
from numpy import *

# Parse and process command line arguments
w.plparseopts(sys.argv, w.PL_PARSE_FULL)

# Initialize plplot
w.plinit()
# Like yellow lines better.
w.plcol0(2)
w.pladv(0)
w.plvpor(0.2, 0.8, 0.2, 0.8)
w.plwind(0., 1., 0., 1.)
w.plbox("bc", 0., 0, "bc", 0., 0)

w.plptex(0.5, 0.8, 1., 0., 0.5, "X#d0#d#<italic/>1#d2#u3#u4#u5#u6#u7#u8#d9#d0#d1")
w.plptex(0.5, 0.8, 1., 0., 0.5, "X#u0#u#<italic/>1#u2#d3#d4#d5#d6#d7#d8#u9#u0#u1")
w.plptex(0.5, 0.6, 1., 0., 0.5, "#ga#uaa#gad#gdp#gr#gf#d, #ga#u#ga#gaad#gdp#gr#gf#d, B#ua#<italic/>a#gad#gdp#gr#gf#d, B#u#ga#gaad#gdp#gr#gf#d")
w.plptex(0.5, 0.4, 1., 0., 0.5, "#ga#daa#gad#gdp#gr#gf#u, #ga#d#ga#gaad#gdp#gr#gf#u, B#da#<italic/>a#gad#gdp#gr#gf#u, B#d#ga#gaad#gdp#gr#gf#u")
w.plptex(0.5, 0.2, 1., 0., 1.1, "B#uf#d, B#ur#d")
w.plptex(0.5, 0.2, 1., 0., -0.1, "B#df#u, B#dr#u")

w.pladv(0)
w.plvpor(0.2, 0.8, 0.2, 0.8)
w.plwind(0., 1.e-200, 0., 1.e-200)
w.plbox("bcmnt", 0., 0, "bcmntv", 0., 0)

# Some fiducial marks that show yoffset problems with the pdf device.
w.plmtex("t", -5.125, 0.1, 0.5, "X")
# -*- coding: utf-8; -*-
# Test whether utf8 and PLplot #[0x...] unicode encoding give same result.
# Also test whether #<FCI-COMMAND-STRING/> form works to change font
# characteristics on the fly.
# Append to effective python path so that can find plplot modules.
from plplot_python_start import *

import sys
import plplot as w
from numpy import *

# Parse and process command line arguments
w.plparseopts(sys.argv, w.PL_PARSE_FULL)

# Initialize plplot
w.plinit()
w.plcol0(2)
w.pladv(0)
w.plvpor(0.1, 0.9, 0.1, 0.9)
w.plwind(0., 1., 0., 1.)
# Just to show edges of viewport
w.plbox("bc", 0., 0, "bc", 0., 0)
w.plcol0(1)
w.plschr(0., 2.)
w.plptex(0.5, 0.5, 1., 0., 0.5, "#<sans-serif/>#[0x222e] is a path integral sign.")
# semitransparent green.
w.plscol0a(2, 0, 255, 0, 0.5)
w.plcol0(2)
w.plptex(0.5, 0.5, 1., 0., 0.5, "#<sans-serif/>∮ is a path integral sign.")
w.plend()
Example #7
0
#!/usr/bin/env python

# Append to effective python path so that can find plplot modules.
from plplot_python_start import *

import sys
import plplot as w
from numpy import *

# Parse and process command line arguments
w.plparseopts(sys.argv, w.PL_PARSE_FULL)

# Initialize plplot
w.plinit()
# Choose 5 here so there is room for non-exponential notation for an axis
# label of +0.08.
w.plsyax(5, 0)
w.pladv(0)
w.plvpor(0.1, 0.9, 0.1, 0.9)
w.plwind(0.00, 1.00, 0.00, 0.08)
w.plbox("bcnst", 0.0, 0, "bcnstv", 0.0, 0);
w.plend()