def test_progress(self, capsys): for i in Progress.range(4, has_output=True, timer=False): print('hi') stdout, stderr = capsys.readouterr() output = """\ 0% complete 0% complete hi 25% complete hi 50% complete hi 75% complete hi 100% complete """ assert stdout == output
def test_progress(self, capsys): for i in Progress.range(4, has_output=True, timer=False): print("hi") stdout, stderr = capsys.readouterr() output = """\ 0% complete 0% complete hi 25% complete hi 50% complete hi 75% complete hi 100% complete """ assert stdout == output
def test_progress(self): with captured_stdout() as stream: for i in Progress.range(4, has_output=True, timer=False): print('hi') time.sleep(.5) stream.seek(0) output = """\ 0% complete 0% complete hi 25% complete hi 50% complete hi 75% complete hi 100% complete """ self.assertEqual(stream.read(), output)
def calculate_lyapunov(unperturbed_file, perturbed_file): #TODO: remove references to N_calc """This function calculates the lyapunov exponent at each integration step between two solutions. PARAMETERS: unperturbed_file: (string) String object with the file name in which the unperturbed solution is stored perturbed_file: (string) String object with the file name in which the perturbed solution is stored RETURNS: lyaps : (float[N_steps]) N_steps-dimension array-like containing the values of the lyapunov exponent calcuated between solution1 and solution2 at each integration step for.""" data_u, mu_u, k_u=read_data.get_data(unperturbed_file,form='lyapunov') data_p, mu_p, k_p=read_data.get_data(perturbed_file,form='lyapunov') lenght=len(data_u) try: assert lenght==len(data_p) assert mu_u==mu_p assert k_u==k_p except AssertionError: print(colors.red|"The integration results are not written as expexted", file=sys.stderr) sys.exit([6]) #Integration results are not written as expected """ Actual calculation of the Lyapunov exponents""" """Difference between the two simulations""" difference=data_u-data_p """Norms of the difference vectors""" norms=np.linalg.norm(difference, axis=1) """Norm of the initial difference""" norm_0=norms[0] """Calculating the ln of the ratio between evolved state and initial state""" log_diff_ratio=np.log(norms/norm_0) lyaps=np.empty(lenght) cumulative_sum=0 print("Lyapunov exponents calculation:") for i in Progress.range(1, lenght): """calculating the mean of the ratios from initial state to state i""" cumulative_sum+=log_diff_ratio[i] lyaps[i]=cumulative_sum/i return lyaps
def test_progress_empty(self, capsys): for i in Progress.range(0, has_output=True, timer=False): print('hi') stdout, stderr = capsys.readouterr() output = '0/0 complete' assert output in stdout
def test_progress_empty(self, capsys): for i in Progress.range(0, has_output=True, timer=False): print("hi") stdout, stderr = capsys.readouterr() output = "0/0 complete" assert output in stdout