def __init__(self, device: Union[None, str, torch.device] = None, **kwargs):
        super().__init__(device, **kwargs)
        # This seed is copied from PLUS
        set_seeds(2020)

        # We inlined the config json files since they aren't shipped with the package
        self._alphabet = Protein()
        self._model_cfg = ModelConfig(input_dim=len(self._alphabet))
        self._model_cfg.model_type = "RNN"
        self._model_cfg.rnn_type = "B"
        self._model_cfg.num_layers = 3
        self._model_cfg.hidden_dim = 512
        self._model_cfg.embedding_dim = 100
        self._run_cfg = RunConfig(sanity_check=True)
        self._run_cfg.batch_size_eval = 512
        self._model = PLUS_RNN(self._model_cfg)
        self._model.load_weights(self._options["model_file"])
        self._model = self._model.to(self._device)
Example #2
0
def main():
    set_seeds(2020)
    args = vars(parser.parse_args())

    alphabet = Protein()
    cfgs = []
    data_cfg = config.DataConfig(args["data_config"])
    cfgs.append(data_cfg)
    if args["lm_model_config"] is None:
        model_cfg = config.ModelConfig(args["model_config"],
                                       input_dim=len(alphabet),
                                       num_classes=8)
        cfgs += [model_cfg]
    else:
        lm_model_cfg = config.ModelConfig(args["lm_model_config"],
                                          idx="lm_model_config",
                                          input_dim=len(alphabet))
        model_cfg = config.ModelConfig(args["model_config"],
                                       input_dim=len(alphabet),
                                       lm_dim=lm_model_cfg.num_layers *
                                       lm_model_cfg.hidden_dim * 2,
                                       num_classes=8)
        cfgs += [model_cfg, lm_model_cfg]
    if model_cfg.model_type == "RNN":
        pr_model_cfg = config.ModelConfig(args["pr_model_config"],
                                          idx="pr_model_config",
                                          model_type="MLP",
                                          num_classes=8)
        if pr_model_cfg.projection:
            pr_model_cfg.set_input_dim(model_cfg.embedding_dim)
        else:
            pr_model_cfg.set_input_dim(model_cfg.hidden_dim * 2)
        cfgs.append(pr_model_cfg)
    run_cfg = config.RunConfig(args["run_config"],
                               sanity_check=args["sanity_check"])
    cfgs.append(run_cfg)
    output, save_prefix = set_output(args, "eval_secstr_log", test=True)
    os.environ['CUDA_VISIBLE_DEVICES'] = args["device"] if args[
        "device"] is not None else ""
    device, data_parallel = torch.device("cuda" if torch.cuda.is_available(
    ) else "cpu"), torch.cuda.device_count() > 1
    config.print_configs(args, cfgs, device, output)
    flag_rnn = (model_cfg.model_type == "RNN")
    flag_lm_model = (args["lm_model_config"] is not None)

    ## load test datasets
    idxs_test, datasets_test, iterators_test = [
        key for key in data_cfg.path.keys() if "test" in key
    ], [], []
    start = Print(" ".join(['start loading test datasets'] + idxs_test),
                  output)
    collate_fn = dataset.collate_sequences if flag_rnn else None
    for idx_test in idxs_test:
        dataset_test = secstr.load_secstr(data_cfg, idx_test, alphabet,
                                          args["sanity_check"])
        dataset_test = dataset.Seq_dataset(*dataset_test,
                                           alphabet,
                                           run_cfg,
                                           flag_rnn,
                                           model_cfg.max_len,
                                           truncate=False)
        iterator_test = torch.utils.data.DataLoader(dataset_test,
                                                    run_cfg.batch_size_eval,
                                                    collate_fn=collate_fn)
        datasets_test.append(dataset_test)
        iterators_test.append(iterator_test)
        end = Print(" ".join(['loaded',
                              str(len(dataset_test)), 'sequences']), output)
    Print(" ".join(['elapsed time:', str(end - start)]), output, newline=True)

    ## initialize a model
    start = Print('start initializing a model', output)
    models_list = [
    ]  # list of lists [model, idx, flag_frz, flag_clip_grad, flag_clip_weight]
    ### model
    if not flag_rnn: model = plus_tfm.PLUS_TFM(model_cfg)
    elif not flag_lm_model: model = plus_rnn.PLUS_RNN(model_cfg)
    else: model = p_elmo.P_ELMo(model_cfg)
    models_list.append([model, "", flag_lm_model, flag_rnn, False])
    ### lm_model
    if flag_lm_model:
        lm_model = p_elmo.P_ELMo_lm(lm_model_cfg)
        models_list.append([lm_model, "lm", True, False, False])
    ### pr_model
    if flag_rnn:
        pr_model = mlp.MLP(pr_model_cfg)
        models_list.append([pr_model, "pr", False, False, False])
    params, pr_params = [], []
    for model, idx, frz, _, _ in models_list:
        if frz: continue
        elif idx != "pr":
            params += [p for p in model.parameters() if p.requires_grad]
        else:
            pr_params += [p for p in model.parameters() if p.requires_grad]
    load_models(args,
                models_list,
                device,
                data_parallel,
                output,
                tfm_cls=flag_rnn)
    get_loss = plus_rnn.get_loss if flag_rnn else plus_tfm.get_loss
    end = Print('end initializing a model', output)
    Print("".join(['elapsed time:', str(end - start)]), output, newline=True)

    ## setup trainer configurations
    start = Print('start setting trainer configurations', output)
    tasks_list = []  # list of lists [idx, metrics_train, metrics_eval]
    tasks_list.append(["cls", [], ["acc8", "acc3"]])
    if not flag_lm_model: tasks_list.append(["lm", [], ["acc"]])
    trainer = Trainer(models_list, get_loss, run_cfg, tasks_list)
    trainer_args = {}
    trainer_args["data_parallel"] = data_parallel
    trainer_args["paired"] = False
    if flag_rnn: trainer_args["projection"] = pr_model_cfg.projection
    if flag_rnn: trainer_args["evaluate_cls"] = plus_rnn.evaluate_cls_amino
    else: trainer_args["evaluate_cls"] = plus_tfm.evaluate_cls_amino
    trainer_args["evaluate"] = ["cls", secstr.evaluate_secstr]
    end = Print('end setting trainer configurations', output)
    Print("".join(['elapsed time:', str(end - start)]), output, newline=True)

    ## evaluate a model
    start = Print('start evaluating a model', output)
    Print(trainer.get_headline(test=True), output)
    for idx_test, dataset_test, iterator_test in zip(idxs_test, datasets_test,
                                                     iterators_test):

        ### evaluate cls
        dataset_test.set_augment(False)
        trainer.set_exec_flags(["cls", 'lm'], [True, False])
        for b, batch in enumerate(iterator_test):
            batch = [
                t.to(device) if type(t) is torch.Tensor else t for t in batch
            ]
            trainer.evaluate(batch, trainer_args)
            if b % 10 == 0:
                print('# cls {:.1%} loss={:.4f}'.format(
                    b / len(iterator_test), trainer.loss_eval),
                      end='\r',
                      file=sys.stderr)
        print(' ' * 150, end='\r', file=sys.stderr)

        ### evaluate lm
        if not flag_lm_model:
            dataset_test.set_augment(True)
            trainer.set_exec_flags(["cls", 'lm'], [False, True])
            for b, batch in enumerate(iterator_test):
                batch = [
                    t.to(device) if type(t) is torch.Tensor else t
                    for t in batch
                ]
                trainer.evaluate(batch, trainer_args)
                if b % 10 == 0:
                    print('# lm {:.1%} loss={:.4f}'.format(
                        b / len(iterator_test), trainer.loss_eval),
                          end='\r',
                          file=sys.stderr)
            print(' ' * 150, end='\r', file=sys.stderr)

        Print(trainer.get_log(test_idx=idx_test, args=trainer_args), output)
        trainer.reset()

    end = Print('end evaluating a model', output)
    Print("".join(['elapsed time:', str(end - start)]), output, newline=True)
    output.close()
Example #3
0
def main():
    set_seeds(2020)
    args = vars(parser.parse_args())

    alphabet = Protein()
    data_cfg  = config.DataConfig(args["data_config"])
    model_cfg = config.ModelConfig(args["model_config"], input_dim=len(alphabet), num_classes=2)
    run_cfg   = config.RunConfig(args["run_config"], sanity_check=args["sanity_check"])
    output, save_prefix = set_output(args, "train_pfam_log")
    os.environ['CUDA_VISIBLE_DEVICES'] = args["device"] if args["device"] is not None else ""
    device, data_parallel = torch.device("cuda" if torch.cuda.is_available() else "cpu"), torch.cuda.device_count() > 1
    config.print_configs(args, [data_cfg, model_cfg, run_cfg], device, output)
    flag_rnn = (model_cfg.model_type == "RNN")
    flag_plus = (model_cfg.rnn_type == "B") if flag_rnn else False
    flag_paired = ("testpairs" in data_cfg.path)

    ## load a train dataset
    start = Print(" ".join(['start loading a train dataset:', data_cfg.path["train"]]), output)
    dataset_train = pfam.load_pfam(data_cfg, "train", alphabet, args["sanity_check"])
    dataset_train = dataset.Pfam_dataset(*dataset_train, alphabet, run_cfg, flag_rnn, model_cfg.max_len,
                                         random_pairing=flag_paired, augment=flag_plus, sanity_check=args["sanity_check"])
    if flag_rnn and flag_paired: collate_fn = dataset.collate_paired_sequences
    elif flag_rnn and flag_plus: collate_fn = dataset.collate_sequences
    elif flag_rnn:               collate_fn = dataset.collate_sequences_pelmo
    else:                        collate_fn = None
    iterator_train = torch.utils.data.DataLoader(dataset_train, run_cfg.batch_size_train, collate_fn=collate_fn, shuffle=True)
    end = Print(" ".join(['loaded', str(len(dataset_train)), 'sequences']), output)
    Print(" ".join(['elapsed time:', str(end - start)]), output, newline=True)

    ## load a test dataset
    start = Print(" ".join(['start loading a test dataset:', data_cfg.path["testpairs" if flag_paired else "test"]]), output)
    if flag_paired:
        dataset_test = pfam.load_pfam_pairs(data_cfg, "testpairs", alphabet, args["sanity_check"])
        dataset_test = dataset.PairedPfam_dataset(*dataset_test, alphabet, run_cfg, flag_rnn, model_cfg.max_len)
    else:
        dataset_test = pfam.load_pfam(data_cfg, "test", alphabet, args["sanity_check"])
        dataset_test = dataset.Pfam_dataset(*dataset_test, alphabet, run_cfg, flag_rnn, model_cfg.max_len,
                                            random_pairing=flag_paired, augment=flag_plus, sanity_check=args["sanity_check"])
    iterator_test = torch.utils.data.DataLoader(dataset_test, run_cfg.batch_size_eval, collate_fn=collate_fn)
    end = Print(" ".join(['loaded', str(len(dataset_test)), 'sequence(pair)s']), output)
    Print(" ".join(['elapsed time:', str(end - start)]), output, newline=True)

    ## initialize a model
    start = Print('start initializing a model', output)
    models_list = [] # list of lists [model, idx, flag_frz, flag_clip_grad, flag_clip_weight]
    if not flag_rnn:                model = plus_tfm.PLUS_TFM(model_cfg); run_cfg.set_total_steps(len(dataset_train))
    elif flag_plus:                 model = plus_rnn.PLUS_RNN(model_cfg)
    else:                           model = p_elmo.P_ELMo_lm(model_cfg)
    models_list.append([model, "", False, flag_rnn, flag_rnn and flag_paired])
    params = []
    for model, _, frz, _, _ in models_list:
        if not frz: params += [p for p in model.parameters() if p.requires_grad]
    load_models(args, models_list, device, data_parallel, output)
    get_loss = plus_rnn.get_loss if flag_rnn else plus_tfm.get_loss
    end = Print('end initializing a model', output)
    Print("".join(['elapsed time:', str(end - start)]), output, newline=True)

    ## setup trainer configurations
    start = Print('start setting trainer configurations', output)
    if flag_rnn: optim = torch.optim.Adam(params, lr=run_cfg.learning_rate)
    else:        optim = get_BertAdam_optimizer(run_cfg, models_list[0][0])
    tasks_list = [] # list of lists [idx, metrics_train, metrics_eval]
    if run_cfg.lm_loss_lambda  != -1: tasks_list.append(["lm",   [], ["acc"]])
    if run_cfg.cls_loss_lambda != -1: tasks_list.append(["cls",  [], ["acc"]])
    trainer = Trainer(models_list, get_loss, run_cfg, tasks_list, optim)
    trainer_args = {}
    trainer_args["data_parallel"] = data_parallel
    trainer_args["paired"] = flag_paired
    if   flag_paired and flag_rnn: trainer_args["evaluate_cls"] = plus_rnn.evaluate_sfp
    elif flag_paired:              trainer_args["evaluate_cls"] = plus_tfm.evaluate_sfp
    else:                          trainer_args["num_alphabets"] = len(alphabet)
    end = Print('end setting trainer configurations', output)
    Print("".join(['elapsed time:', str(end - start)]), output, newline=True)

    ## train a model
    start = Print('start training a model', output)
    Print(trainer.get_headline(), output)
    for epoch in range(run_cfg.num_epochs):
        ### train
        for B, batch in enumerate(iterator_train):
            batch = [t.to(device) if type(t) is torch.Tensor else t for t in batch]
            trainer.train(batch, trainer_args)
            if B % 10 == 0: print('# epoch [{}/{}] train {:.1%} loss={:.4f}'.format(
                epoch + 1, run_cfg.num_epochs, B / len(iterator_train), trainer.loss_train), end='\r', file=sys.stderr)

            if trainer.global_step % 20000 == 0 or args["sanity_check"]:
                print(' ' * 150, end='\r', file=sys.stderr)

                ### evaluate lm
                if run_cfg.lm_loss_lambda != -1:
                    if flag_paired: dataset_test.set_augment(True)
                    trainer.set_exec_flags(["lm", "cls"], [True, False])
                    for b, batch in enumerate(iterator_test):
                        batch = [t.to(device) if type(t) is torch.Tensor else t for t in batch]
                        trainer.evaluate(batch, trainer_args)
                        if b % 10 == 0: print('# lm {:.1%} loss={:.4f}'.format(
                            b / len(iterator_test), trainer.loss_eval), end='\r', file=sys.stderr)
                    print(' ' * 150, end='\r', file=sys.stderr)

                ### evaluate cls
                if run_cfg.cls_loss_lambda != -1:
                    dataset_test.set_augment(False)
                    trainer.set_exec_flags(["lm", "cls"], [False, True])
                    for b, batch in enumerate(iterator_test):
                        batch = [t.to(device) if type(t) is torch.Tensor else t for t in batch]
                        trainer.evaluate(batch, trainer_args)
                        if b % 10 == 0: print('# cls {:.1%} loss={:.4f}'.format(
                            b / len(iterator_test), trainer.loss_eval), end='\r', file=sys.stderr)
                    print(' ' * 150, end='\r', file=sys.stderr)

                ### print log and save models
                trainer.save(save_prefix)
                Print(trainer.get_log(epoch + 1, args=trainer_args), output)
                trainer.set_exec_flags(["lm", "cls"], [True, True])
                trainer.reset()

    end = Print('end trainin a model', output)
    Print("".join(['elapsed time:', str(end - start)]), output, newline=True)
    output.close()
Example #4
0
def main():
    set_seeds(2020)
    args = vars(parser.parse_args())

    alphabet = Protein()
    cfgs = []
    data_cfg = config.DataConfig(args["data_config"])
    cfgs.append(data_cfg)
    if args["lm_model_config"] is None:
        model_cfg = config.ModelConfig(args["model_config"],
                                       input_dim=len(alphabet),
                                       num_classes=10)
        cfgs += [model_cfg]
    else:
        lm_model_cfg = config.ModelConfig(args["lm_model_config"],
                                          idx="lm_model_config",
                                          input_dim=len(alphabet))
        model_cfg = config.ModelConfig(args["model_config"],
                                       input_dim=len(alphabet),
                                       lm_dim=lm_model_cfg.num_layers *
                                       lm_model_cfg.hidden_dim * 2,
                                       num_classes=10)
        cfgs += [model_cfg, lm_model_cfg]
    if model_cfg.model_type == "RNN":
        pr_model_cfg = config.ModelConfig(args["pr_model_config"],
                                          idx="pr_model_config",
                                          model_type="MLP",
                                          num_classes=10)
        if pr_model_cfg.projection:
            pr_model_cfg.set_input_dim(model_cfg.embedding_dim)
        else:
            pr_model_cfg.set_input_dim(model_cfg.hidden_dim * 2)
        cfgs.append(pr_model_cfg)
    run_cfg = config.RunConfig(args["run_config"],
                               sanity_check=args["sanity_check"])
    cfgs.append(run_cfg)
    output, save_prefix = set_output(args, "train_localization_log")
    os.environ['CUDA_VISIBLE_DEVICES'] = args["device"] if args[
        "device"] is not None else ""
    device, data_parallel = torch.device("cuda" if torch.cuda.is_available(
    ) else "cpu"), torch.cuda.device_count() > 1
    config.print_configs(args, cfgs, device, output)
    flag_rnn = (model_cfg.model_type == "RNN")
    flag_lm_model = (args["lm_model_config"] is not None)
    flag_lm_loss = (run_cfg.lm_loss_lambda != -1)

    ## load a train dataset
    start = Print(
        " ".join(['start loading a train dataset:', data_cfg.path["train"]]),
        output)
    dataset_train = localization.load_localization(data_cfg, "train", alphabet,
                                                   args["sanity_check"])
    dataset_train = dataset.Seq_dataset(*dataset_train, alphabet, run_cfg,
                                        flag_rnn, model_cfg.max_len)
    collate_fn = dataset.collate_sequences if flag_rnn else None
    iterator_train = torch.utils.data.DataLoader(dataset_train,
                                                 run_cfg.batch_size_train,
                                                 collate_fn=collate_fn,
                                                 shuffle=True)
    end = Print(" ".join(['loaded',
                          str(len(dataset_train)), 'sequences']), output)
    Print(" ".join(['elapsed time:', str(end - start)]), output, newline=True)

    ## load a dev dataset
    start = Print(
        " ".join(['start loading a dev dataset:', data_cfg.path["dev"]]),
        output)
    dataset_dev = localization.load_localization(data_cfg, "dev", alphabet,
                                                 args["sanity_check"])
    dataset_dev = dataset.Seq_dataset(*dataset_dev, alphabet, run_cfg,
                                      flag_rnn, model_cfg.max_len)
    iterator_dev = torch.utils.data.DataLoader(dataset_dev,
                                               run_cfg.batch_size_eval,
                                               collate_fn=collate_fn)
    end = Print(" ".join(['loaded',
                          str(len(dataset_dev)), 'sequences']), output)
    Print(" ".join(['elapsed time:', str(end - start)]), output, newline=True)

    ## initialize a model
    start = Print('start initializing a model', output)
    models_list = [
    ]  # list of lists [model, idx, flag_frz, flag_clip_grad, flag_clip_weight]
    ### model
    if not flag_rnn: model = plus_tfm.PLUS_TFM(model_cfg)
    elif not flag_lm_model: model = plus_rnn.PLUS_RNN(model_cfg)
    else: model = p_elmo.P_ELMo(model_cfg)
    models_list.append([model, "", flag_lm_model, flag_rnn, False])
    ### lm_model
    if flag_lm_model:
        lm_model = p_elmo.P_ELMo_lm(lm_model_cfg)
        models_list.append([lm_model, "lm", True, False, False])
    ### pr_model
    if flag_rnn:
        pr_model = mlp.MLP(pr_model_cfg, per_seq=True)
        models_list.append([pr_model, "pr", False, True, False])
    params, pr_params = [], []
    for model, idx, frz, _, _ in models_list:
        if frz: continue
        elif idx != "pr":
            params += [p for p in model.parameters() if p.requires_grad]
        else:
            pr_params += [p for p in model.parameters() if p.requires_grad]
    load_models(args,
                models_list,
                device,
                data_parallel,
                output,
                tfm_cls=flag_rnn)
    get_loss = plus_rnn.get_loss if flag_rnn else plus_tfm.get_loss
    end = Print('end initializing a model', output)
    Print("".join(['elapsed time:', str(end - start)]), output, newline=True)

    ## setup trainer configurations
    start = Print('start setting trainer configurations', output)
    optim = torch.optim.Adam([{
        'params': params,
        'lr': run_cfg.learning_rate
    }, {
        'params': pr_params,
        'lr': run_cfg.pr_learning_rate
    }])
    tasks_list = []  # list of lists [idx, metrics_train, metrics_eval]
    tasks_list.append(["cls", [], ["acc"]])
    if flag_lm_loss: tasks_list.append(["lm", [], ["acc"]])
    trainer = Trainer(models_list, get_loss, run_cfg, tasks_list, optim)
    trainer_args = {}
    trainer_args["data_parallel"] = data_parallel
    trainer_args["paired"] = False
    if flag_rnn: trainer_args["projection"] = pr_model_cfg.projection
    if flag_rnn: trainer_args["evaluate_cls"] = plus_rnn.evaluate_cls_protein
    else: trainer_args["evaluate_cls"] = plus_tfm.evaluate_cls_protein
    end = Print('end setting trainer configurations', output)
    Print("".join(['elapsed time:', str(end - start)]), output, newline=True)

    ## train a model
    start = Print('start training a model', output)
    Print(trainer.get_headline(), output)
    for epoch in range(run_cfg.num_epochs):
        ### train
        dataset_train.set_augment(flag_lm_loss)
        for B, batch in enumerate(iterator_train):
            batch = [
                t.to(device) if type(t) is torch.Tensor else t for t in batch
            ]
            trainer.train(batch, trainer_args)
            if B % 10 == 0:
                print('# epoch [{}/{}] train {:.1%} loss={:.4f}'.format(
                    epoch + 1, run_cfg.num_epochs, B / len(iterator_train),
                    trainer.loss_train),
                      end='\r',
                      file=sys.stderr)
        print(' ' * 150, end='\r', file=sys.stderr)

        ### evaluate cls
        dataset_dev.set_augment(False)
        trainer.set_exec_flags(["cls", 'lm'], [True, False])
        for b, batch in enumerate(iterator_dev):
            batch = [
                t.to(device) if type(t) is torch.Tensor else t for t in batch
            ]
            trainer.evaluate(batch, trainer_args)
            if b % 10 == 0:
                print('# cls {:.1%} loss={:.4f}'.format(
                    b / len(iterator_dev), trainer.loss_eval),
                      end='\r',
                      file=sys.stderr)
        print(' ' * 150, end='\r', file=sys.stderr)

        ### evaluate lm
        if flag_lm_loss:
            dataset_dev.set_augment(True)
            trainer.set_exec_flags(["cls", 'lm'], [False, True])
            for b, batch in enumerate(iterator_dev):
                batch = [
                    t.to(device) if type(t) is torch.Tensor else t
                    for t in batch
                ]
                trainer.evaluate(batch, trainer_args)
                if b % 10 == 0:
                    print('# lm {:.1%} loss={:.4f}'.format(
                        b / len(iterator_dev), trainer.loss_eval),
                          end='\r',
                          file=sys.stderr)
            print(' ' * 150, end='\r', file=sys.stderr)

        ### print log and save models
        trainer.save(save_prefix)
        Print(trainer.get_log(epoch + 1, args=trainer_args), output)
        trainer.set_exec_flags(["cls", "lm"], [True, True])
        trainer.reset()
        if trainer.patience == 0: break

    end = Print('end training a model', output)
    Print("".join(['elapsed time:', str(end - start)]), output, newline=True)
Example #5
0
def main():
    set_seeds(2020)
    args = vars(parser.parse_args())

    alphabet = Protein()
    cfgs = []
    data_cfg  = config.DataConfig(args["data_config"]);   cfgs.append(data_cfg)
    if args["lm_model_config"] is None:
        model_cfg = config.ModelConfig(args["model_config"], input_dim=len(alphabet))
        cfgs += [model_cfg]
    else:
        lm_model_cfg = config.ModelConfig(args["lm_model_config"], idx="lm_model_config", input_dim=len(alphabet))
        model_cfg = config.ModelConfig(args["model_config"], input_dim=len(alphabet),
                                       lm_dim=lm_model_cfg.num_layers * lm_model_cfg.hidden_dim * 2)
        cfgs += [model_cfg, lm_model_cfg]
    run_cfg = config.RunConfig(args["run_config"], sanity_check=args["sanity_check"]);  cfgs.append(run_cfg)
    output, save_prefix = set_output(args, "embedding_log", embedding=True)
    os.environ['CUDA_VISIBLE_DEVICES'] = args["device"] if args["device"] is not None else ""
    device, data_parallel = torch.device("cuda" if torch.cuda.is_available() else "cpu"), torch.cuda.device_count() > 1
    config.print_configs(args, cfgs, device, output)
    flag_rnn = (model_cfg.model_type == "RNN")
    flag_lm_model = (args["lm_model_config"] is not None)

    ## load test datasets
    start = Print(" ".join(['start loading a dataset:', data_cfg.path["test"]]), output)
    test_dataset = load_fasta(data_cfg, "test", alphabet, sanity_check=args["sanity_check"])
    test_dataset = dataset.Embedding_dataset(test_dataset, alphabet, run_cfg, flag_rnn)
    collate_fn = dataset.collate_sequences_for_embedding if flag_rnn else None
    iterator_test = torch.utils.data.DataLoader(test_dataset, run_cfg.batch_size_eval, collate_fn=collate_fn)
    end = Print(" ".join(['loaded', str(len(test_dataset)), 'sequences']), output)
    Print(" ".join(['elapsed time:', str(end - start)]), output, newline=True)

    ## initialize a model
    start = Print('start initializing a model', output)
    models_list = [] # list of lists [model, idx, flag_frz, flag_clip_grad, flag_clip_weight]
    ### model
    if not flag_rnn:                model = plus_tfm.PLUS_TFM(model_cfg)
    elif not flag_lm_model:         model = plus_rnn.PLUS_RNN(model_cfg)
    else:                           model = p_elmo.P_ELMo(model_cfg)
    models_list.append([model, "", True, False, False])
    ### lm_model
    if flag_lm_model:
        lm_model = p_elmo.P_ELMo_lm(lm_model_cfg)
        models_list.append([lm_model, "lm", True, False, False])
    load_models(args, models_list, device, data_parallel, output, tfm_cls=flag_rnn)
    get_loss = plus_rnn.get_embedding if flag_rnn else plus_tfm.get_embedding
    end = Print('end initializing a model', output)
    Print("".join(['elapsed time:', str(end - start)]), output, newline=True)

    ## setup trainer configurations
    start = Print('start setting trainer configurations', output)
    tasks_list = [["", [], []]] # list of lists [idx, metrics_train, metrics_eval]
    trainer = Trainer(models_list, get_loss, run_cfg, tasks_list)
    trainer_args = {"data_parallel": data_parallel}
    end = Print('end setting trainer configurations', output)
    Print("".join(['elapsed time:', str(end - start)]), output, newline=True)

    ## evaluate a model
    start = Print('start embedding protein sequences', output)

    ### evaluate cls
    for b, batch in enumerate(iterator_test):
        batch = [t.to(device) if type(t) is torch.Tensor else t for t in batch]
        trainer.embed(batch, trainer_args)
        if b % 10 == 0: print('# cls {:.1%} loss={:.4f}'.format(
            b / len(iterator_test), trainer.loss_eval), end='\r', file=sys.stderr)
    print(' ' * 150, end='\r', file=sys.stderr)

    trainer.save_embeddings(save_prefix)
    trainer.reset()

    end = Print('end embedding protein sequences', output)
    Print("".join(['elapsed time:', str(end - start)]), output, newline=True)
    output.close()
Example #6
0
def main():
    set_seeds(2020)
    args = vars(parser.parse_args())

    alphabet = Protein()
    data_cfg = config.DataConfig(args["data_config"])
    model_cfg = config.ModelConfig(args["model_config"],
                                   input_dim=len(alphabet),
                                   num_classes=2)
    run_cfg = config.RunConfig(args["run_config"],
                               eval=True,
                               sanity_check=args["sanity_check"])
    output, save_prefix = set_output(args, "eval_pfam_log", test=True)
    os.environ['CUDA_VISIBLE_DEVICES'] = args["device"] if args[
        "device"] is not None else ""
    device, data_parallel = torch.device("cuda" if torch.cuda.is_available(
    ) else "cpu"), torch.cuda.device_count() > 1
    config.print_configs(args, [data_cfg, model_cfg, run_cfg], device, output)
    flag_rnn = (model_cfg.model_type == "RNN")
    flag_plus = (model_cfg.rnn_type == "B") if flag_rnn else False
    flag_paired = ("testpairs" in data_cfg.path)

    ## load a test dataset
    start = Print(
        " ".join([
            'start loading a test dataset:',
            data_cfg.path["testpairs" if flag_paired else "test"]
        ]), output)
    if flag_paired:
        dataset_test = pfam.load_pfam_pairs(data_cfg, "testpairs", alphabet,
                                            args["sanity_check"])
        dataset_test = dataset.PairedPfam_dataset(*dataset_test, alphabet,
                                                  run_cfg, flag_rnn,
                                                  model_cfg.max_len)
    else:
        dataset_test = pfam.load_pfam(data_cfg, "test", alphabet,
                                      args["sanity_check"])
        dataset_test = dataset.Pfam_dataset(*dataset_test,
                                            alphabet,
                                            run_cfg,
                                            flag_rnn,
                                            model_cfg.max_len,
                                            random_pairing=flag_paired,
                                            augment=flag_plus,
                                            sanity_check=args["sanity_check"])
    if flag_rnn and flag_paired: collate_fn = dataset.collate_paired_sequences
    elif flag_rnn and flag_plus: collate_fn = dataset.collate_sequences
    elif flag_rnn: collate_fn = dataset.collate_sequences_pelmo
    else: collate_fn = None
    iterator_test = torch.utils.data.DataLoader(dataset_test,
                                                run_cfg.batch_size_eval,
                                                collate_fn=collate_fn)
    end = Print(
        " ".join(['loaded',
                  str(len(dataset_test)), 'sequence(pair)s']), output)
    Print(" ".join(['elapsed time:', str(end - start)]), output, newline=True)

    ## initialize a model
    start = Print('start initializing a model', output)
    models_list = [
    ]  # list of lists [model, idx, flag_frz, flag_clip_grad, flag_clip_weight]
    if not flag_rnn: model = plus_tfm.PLUS_TFM(model_cfg)
    elif flag_plus: model = plus_rnn.PLUS_RNN(model_cfg)
    else: model = p_elmo.P_ELMo_lm(model_cfg)
    models_list.append([model, "", True, False, False])
    load_models(args, models_list, device, data_parallel, output)
    get_loss = plus_rnn.get_loss if flag_rnn else plus_tfm.get_loss
    end = Print('end initializing a model', output)
    Print("".join(['elapsed time:', str(end - start)]), output, newline=True)

    ## setup trainer configurations
    start = Print('start setting trainer configurations', output)
    tasks_list = []  # list of lists [idx, metrics_train, metrics_eval]
    tasks_list.append(["lm", [], ["acc"]])
    if flag_paired: tasks_list.append(["cls", [], ["acc"]])
    trainer = Trainer(models_list, get_loss, run_cfg, tasks_list)
    trainer_args = {}
    trainer_args["data_parallel"] = data_parallel
    trainer_args["paired"] = flag_paired
    if flag_paired and flag_rnn:
        trainer_args["evaluate_cls"] = plus_rnn.evaluate_sfp
    elif flag_paired:
        trainer_args["evaluate_cls"] = plus_tfm.evaluate_sfp
    else:
        trainer_args["num_alphabets"] = len(alphabet)
    end = Print('end setting trainer configurations', output)
    Print("".join(['elapsed time:', str(end - start)]), output, newline=True)

    ## evaluate a model
    start = Print('start evaluating a model', output)
    Print(trainer.get_headline(test=True), output)

    ### evaluate lm
    if flag_paired: dataset_test.set_augment(True)
    trainer.set_exec_flags(["lm", "cls"], [True, False])
    for b, batch in enumerate(iterator_test):
        batch = [t.to(device) if type(t) is torch.Tensor else t for t in batch]
        trainer.evaluate(batch, trainer_args)
        if b % 10 == 0:
            print('# lm {:.1%} loss={:.4f}'.format(b / len(iterator_test),
                                                   trainer.loss_eval),
                  end='\r',
                  file=sys.stderr)
    print(' ' * 150, end='\r', file=sys.stderr)

    ### evaluate cls
    if flag_paired:
        dataset_test.set_augment(False)
        trainer.set_exec_flags(["lm", "cls"], [False, True])
        for b, batch in enumerate(iterator_test):
            batch = [
                t.to(device) if type(t) is torch.Tensor else t for t in batch
            ]
            trainer.evaluate(batch, trainer_args)
            if b % 10 == 0:
                print('# cls {:.1%} loss={:.4f}'.format(
                    b / len(iterator_test), trainer.loss_eval),
                      end='\r',
                      file=sys.stderr)
        print(' ' * 150, end='\r', file=sys.stderr)

    Print(trainer.get_log(test_idx="Pfam", args=trainer_args), output)
    end = Print('end evaluating a model', output)
    Print("".join(['elapsed time:', str(end - start)]), output, newline=True)
    output.close()