class AutoARIMA(ExtendedForecastingModel): def __init__(self, *autoarima_args, **autoarima_kwargs): """ Auto-ARIMA This implementation is a thin wrapper around `pmdarima.txt AutoARIMA model <https://alkaline-ml.com/pmdarima/modules/generated/pmdarima.arima.AutoARIMA.html>`_, which provides functionality similar to R's `auto.arima <https://www.rdocumentation.org/packages/forecast/versions/7.3/topics/auto.arima>`_. This model supports the same parameters as the pmdarima.txt AutoARIMA model. See `pmdarima.txt documentation <https://alkaline-ml.com/pmdarima/modules/generated/pmdarima.arima.AutoARIMA.html>`_ for an extensive documentation and a list of supported parameters. Parameters ---------- autoarima_args Positional arguments for the pmdarima.txt AutoARIMA model autoarima_kwargs Keyword arguments for the pmdarima.txt AutoARIMA model """ super().__init__() self.model = PmdAutoARIMA(*autoarima_args, **autoarima_kwargs) self.trend = self.model.trend def __str__(self): return 'Auto-ARIMA' def fit(self, series: TimeSeries, exog: Optional[TimeSeries] = None): super().fit(series, exog) series = self.training_series self.model.fit(series.values(), X=exog.values() if exog else None) def predict(self, n: int, exog: Optional[TimeSeries] = None, num_samples: int = 1): super().predict(n, exog, num_samples) forecast = self.model.predict(n_periods=n, X=exog.values() if exog else None) return self._build_forecast_series(forecast) @property def min_train_series_length(self) -> int: return 30 def _supports_range_index(self) -> bool: raise_if( self.trend and self.trend != "c", "'trend' is not None. Range indexing is not supported in that case.", logger) return True
class AutoARIMA(UnivariateForecastingModel): def __init__(self, *autoarima_args, **autoarima_kwargs): """ Auto-ARIMA This implementation is a thin wrapper around `pmdarima.txt AutoARIMA model <https://alkaline-ml.com/pmdarima/modules/generated/pmdarima.arima.AutoARIMA.html>`_, which provides functionality similar to R's `auto.arima <https://www.rdocumentation.org/packages/forecast/versions/7.3/topics/auto.arima>`_. This model supports the same parameters as the pmdarima.txt AutoARIMA model. See `pmdarima.txt documentation <https://alkaline-ml.com/pmdarima/modules/generated/pmdarima.arima.AutoARIMA.html>`_ for an extensive documentation and a list of supported parameters. Parameters ---------- autoarima_args Positional arguments for the pmdarima.txt AutoARIMA model autoarima_kwargs Keyword arguments for the pmdarima.txt AutoARIMA model """ super().__init__() self.model = PmdAutoARIMA(*autoarima_args, **autoarima_kwargs) def __str__(self): return 'Auto-ARIMA' def fit(self, series: TimeSeries): super().fit(series) series = self.training_series self.model.fit(series.values()) def predict(self, n): super().predict(n) forecast = self.model.predict(n_periods=n) return self._build_forecast_series(forecast) @property def min_train_series_length(self) -> int: return 30
class AutoARIMA(DualCovariatesForecastingModel): def __init__(self, *autoarima_args, **autoarima_kwargs): """Auto-ARIMA This implementation is a thin wrapper around `pmdarima AutoARIMA model <https://alkaline-ml.com/pmdarima/modules/generated/pmdarima.arima.AutoARIMA.html>`_, which provides functionality similar to R's `auto.arima <https://www.rdocumentation.org/packages/forecast/versions/7.3/topics/auto.arima>`_. This model supports the same parameters as the pmdarima AutoARIMA model. See `pmdarima documentation <https://alkaline-ml.com/pmdarima/modules/generated/pmdarima.arima.AutoARIMA.html>`_ for an extensive documentation and a list of supported parameters. .. note:: For a faster and probabilistic version of AutoARIMA, checkout the :class:`StatsForecastAutoARIMA` model. Parameters ---------- autoarima_args Positional arguments for the pmdarima.AutoARIMA model autoarima_kwargs Keyword arguments for the pmdarima.AutoARIMA model """ super().__init__() self.model = PmdAutoARIMA(*autoarima_args, **autoarima_kwargs) self.trend = self.model.trend def __str__(self): return "Auto-ARIMA" def _fit(self, series: TimeSeries, future_covariates: Optional[TimeSeries] = None): super()._fit(series, future_covariates) series = self.training_series self.model.fit( series.values(), X=future_covariates.values() if future_covariates else None) return self def _predict( self, n: int, future_covariates: Optional[TimeSeries] = None, num_samples: int = 1, ): super()._predict(n, future_covariates, num_samples) forecast = self.model.predict( n_periods=n, X=future_covariates.values() if future_covariates else None) return self._build_forecast_series(forecast) @property def min_train_series_length(self) -> int: return 10 def _supports_range_index(self) -> bool: raise_if( self.trend and self.trend != "c", "'trend' is not None. Range indexing is not supported in that case.", logger, ) return True