temp_data, time_slice, train, cluster_radius, order) print "train_structure_data: ", train_structure_data print "poi_adjacent_list: ", poi_adjacent_list print "recommends: ", recommends print "unknow_poi_set: ", unknow_poi_set tensor = trans(train_structure_data, poi_adjacent_list, order, len(axis_pois), len(axis_users), time_slice) # print "transition tensor: ", tensor U, S, D = HOSVD(numpy.array(tensor), 0.7) A = reconstruct(S, U) print "reconstruct tensor: ", A print frobenius_norm(tensor - A) avg_precision, avg_recall, avg_f1_score, availability = recommend( A, recommends, unknow_poi_set, time_slice, top_k, order) print "avg_precision, avg_recall, avg_f1_score, availability: ", avg_precision, avg_recall, avg_f1_score, availability # y_values1.append(sparsity(tensor)) # y_values2.append(sparsity(A)) y_values3.append(avg_precision) y_values4.append(avg_recall) y_values5.append(avg_f1_score) x_values.append(cluster_radius) cluster_radius += 0.05 pylab.plot(x_values, y_values3, 'bs', linewidth=1, linestyle="-",
A2 = trans2(train_structure_data2, order, len(axis_pois2), time_slice, 0.7) # tensor factorization temp_data3, time_slice, train3 = init_data3(time_slice, train, region, filter_count) axis_pois3, axis_users3, train_structure_data3, recommends3, unknow_poi_set3 = preprocess3(temp_data3, time_slice, train3, order) tensor3 = trans3(train_structure_data3, order, len(axis_pois3), len(axis_users3), time_slice) U3, S3, D3 = HOSVD(numpy.array(tensor3), 0.7) A3 = reconstruct(S3, U3) x_values = [] y_values1 = [] y_values2 = [] y_values3 = [] y_values4 = [] while top_k <= 10: avg_precision, avg_recall, avg_f1_score, availability = recommend(A, recommends, unknow_poi_set, time_slice, top_k, order) print "avg_recall(pmpt): ", avg_recall avg_precision2, avg_recall2, avg_f1_score2, availability2 = recommend2(A2, recommends2, unknow_poi_set2, time_slice, top_k, order) print "avg_recall(fmc): ", avg_recall2 avg_precision3, avg_recall3, avg_f1_score3, availability3 = recommend3(A3, recommends3, unknow_poi_set3, time_slice, top_k, order) print "avg_recall(tf): ", avg_recall3 y_values1.append(avg_recall) y_values2.append(avg_recall2) y_values3.append(avg_recall3) # y_values4.append(availability) x_values.append(top_k) top_k += 1