def __init__(self, n_input_feat, n_output_feat, n_size, init='glorot_uniform', activation='relu', activation_first=True, **kwargs): """ Parameters ---------- n_input_feat: int Number of input channels n_output_feat: int Number of output channels n_size: int Number of filter size(full length) init: str, optional Weight initialization for filters. activation: str, optional Activation function applied activation_first: bool, optional If to apply activation before convolution """ self.init = initializations.get(init) # Set weight initialization self.activation = activations.get(activation) # Get activations self.n_input_feat = n_input_feat self.n_output_feat = n_output_feat self.n_size = n_size self.activation_first = activation_first super(Conv2DUp, self).__init__(**kwargs)
def __init__(self, n_input_feat, n_output=2, init='glorot_uniform', activation='relu', **kwargs): """ Parameters ---------- n_input_feat: int Number of input channels n_output: int, optional Number of output channels: 2 for classification, 1 for regression init: str, optional Weight initialization for filters. activation: str, optional Activation function applied """ self.n_input_feat = n_input_feat self.n_output = n_output self.init = initializations.get(init) # Set weight initialization self.activation = activations.get(activation) # Get activations super(ContactMapGather, self).__init__(**kwargs)
def __init__(self, n_input_feat, n_output_feat, n_size=3, rate=[6, 12, 18, 24], init='glorot_uniform', activation='relu', **kwargs): """ Parameters ---------- n_input_feat: int Number of input channels n_output_feat: int Number of output channels for each Atrous component n_size: int Number of filter size(full length) rate: int Rate of each atrous convolution init: str, optional Weight initialization for filters. activation: str, optional Activation function applied activation_first: bool, optional If to apply activation before convolution """ self.init = initializations.get(init) # Set weight initialization self.activation = activations.get(activation) # Get activations self.n_input_feat = n_input_feat self.n_output_feat = n_output_feat self.n_size = n_size self.rate = rate super(Conv2DASPP, self).__init__(**kwargs)
def __init__(self, pos_start=0, pos_end=25, embedding_length=50, init='glorot_uniform', activation='relu', **kwargs): """ Parameters ---------- pos_start: int, optional starting position of raw features that need embedding pos_end: int, optional ending position embedding_length: int, optional length for embedding init: str, optional Weight initialization for filters. activation: str, optional Activation function applied """ self.init = initializations.get(init) # Set weight initialization self.activation = activations.get(activation) # Get activations self.pos_start = pos_start self.pos_end = pos_end self.embedding_length = embedding_length super(ResidueEmbedding, self).__init__(**kwargs)
def __init__(self, n_input_feat, n_output_feat, n_size, init='glorot_uniform', activation='relu', **kwargs): """ Parameters ---------- n_input_feat: int Number of input channels n_output_feat: int Number of output channels n_size: int Number of filter size(full length) init: str, optional Weight initialization for filters. activation: str, optional Activation function applied """ self.init = initializations.get(init) # Set weight initialization self.activation = activations.get(activation) # Get activations self.n_input_feat = n_input_feat self.n_output_feat = n_output_feat self.n_size = n_size super(Conv2DLayer_RaptorX, self).__init__(**kwargs)
def __init__(self, n_input_feat, n_output_feat, n_size, rate, init='glorot_uniform', activation='relu', activation_first=True, dropout=None, **kwargs): """ Parameters ---------- n_input_feat: int Number of input channels n_output_feat: int Number of output channels n_size: int Number of filter size(full length) rate: int Rate of atrous convolution init: str, optional Weight initialization for filters. activation: str, optional Activation function applied dropout: float, optional Dropout probability, not supported here """ self.init = initializations.get(init) # Set weight initialization self.activation = activations.get(activation) # Get activations self.n_input_feat = n_input_feat self.n_output_feat = n_output_feat self.n_size = n_size self.rate = rate self.activation_first = activation_first super(DiagConv2DAtrous, self).__init__(**kwargs)