def test_read_image(self): write_tmp_file(self.image, self.timestamp, self.region, self.metadata, self.testfilename, self.start_date, self.sp_res) _, _, _, timestamp, metadata = read_image(self.testfilename) timediff = self.timestamp - timestamp assert timediff.days == 0 assert metadata == self.metadata
def test_clip_bbox(self): lon_min = -180 lon_max = 0 lat_min = 0 lat_max = 90 write_tmp_file( self.image, self.timestamp, self.region, self.metadata, self.testfilename, self.start_date, self.sp_res ) data_src, lon, lat, _, _ = read_image(self.testfilename) data, lon_new, lat_new = clip_bbox(data_src, lon, lat, lon_min, lat_min, lon_max, lat_max) nptest.assert_array_equal(self.bbox, data[self.variable]) nptest.assert_array_equal(self.lon_new, lon_new) nptest.assert_array_equal(self.lat_new, lat_new)
def resample_to_shape(source_file, region, sp_res, grid, prefix=None, nan_value=None, dest_nan_value=None, variables=None, shapefile=None): """ Resamples images and clips country boundaries Parameters ---------- source_file : str Path to source file. region : str Identifier of the region in the shapefile. If the default shapefile is used, this would be the FIPS country code. sp_res : int or float Spatial resolution of the shape-grid. grid : poets.grid.RegularGrid or poets.grid.ShapeGrid Grid to resample data to. prefix : str, optional Prefix for the variable in the NetCDF file, should be name of source nan_value : int, float, optional Not a number value of the original data as given by the data provider dest_nan_value : int or float, optional NaN value used in the final NetCDF file. variables : list of str, optional Variables to resample from original file. shapefile : str, optional Path to shape file, uses "world country admin boundary shapefile" by default. Returns ------- res_data : dict of numpy.arrays resampled image dest_lon : numpy.array longitudes of the points in the resampled image dest_lat : numpy.array latitudes of the points in the resampled image gpis : numpy.array grid point indices timestamp : datetime.date date of the image metadata : dict Metadata derived from input file. """ if prefix is not None: prefix += '_' fileExtension = os.path.splitext(source_file)[1].lower() if region == 'global': lon_min = -180 lon_max = 180 lat_min = -90 lat_max = 90 else: shp = Shape(region, shapefile) lon_min = shp.bbox[0] lon_max = shp.bbox[2] lat_min = shp.bbox[1] lat_max = shp.bbox[3] if fileExtension in ['.nc', '.nc3', '.nc4']: data_src, lon, lat, timestamp, metadata = nc.read_image( source_file, variables) if (lon_min >= lon.max() or lon_max <= lon.min() or lat_max <= lat.min() or lat_min >= lat.max()): return "No data" data, src_lon, src_lat = nc.clip_bbox(data_src, lon, lat, lon_min, lat_min, lon_max, lat_max) elif fileExtension in ['.h5']: data_src, lon, lat, timestamp, metadata = h5.read_image( source_file, variables) if (lon_min >= lon.max() or lon_max <= lon.min() or lat_max <= lat.min() or lat_min >= lat.max()): return "No data" data, src_lon, src_lat = nc.clip_bbox(data_src, lon, lat, lon_min, lat_min, lon_max, lat_max) elif fileExtension in imgfiletypes: data, src_lon, src_lat, timestamp, metadata = bbox_img( source_file, region, fileExtension, shapefile) if nan_value is not None: for key in data.keys(): data[key] = np.ma.array(data[key], mask=(data[key] == nan_value)) src_lon, src_lat = np.meshgrid(src_lon, src_lat) lons = grid.arrlon[0:grid.shape[0]] dest_lon, dest_lat = np.meshgrid(lons, np.unique(grid.arrlat)[::-1]) gpis = grid.get_bbox_grid_points(grid.arrlat.min(), grid.arrlat.max(), grid.arrlon.min(), grid.arrlon.max()) search_rad = 180000 * sp_res data = resample.resample_to_grid(data, src_lon, src_lat, dest_lon, dest_lat, search_rad=search_rad) res_data = {} path = [] if region != 'global': _, _, multipoly = shp._get_shape() for ring in multipoly: poly_verts = list(ring.exterior.coords) path.append(matplotlib.path.Path(poly_verts)) coords = [grid.arrlon, grid.arrlat[::-1]] coords2 = np.zeros((len(coords[0]), 2)) for idx in range(0, len(coords[0])): coords2[idx] = [coords[0][idx], coords[1][idx]] mask_old = path[0].contains_points(coords2) for key in data.keys(): if variables is not None: if key not in variables: del metadata[key] continue if region != 'global': for ring in path: mask_new = (ring.contains_points(coords2)) mask_rev = scipy.logical_or(mask_old, mask_new) mask_old = mask_rev mask_rev = mask_rev.reshape(dest_lon.shape) mask = np.invert(mask_rev) mask[data[key].mask == True] = True else: mask = data[key].mask if prefix is None: var = key else: var = prefix + key if metadata is not None: metadata[var] = metadata[key] if var != key: del metadata[key] res_data[var] = np.ma.masked_array(data[key], mask=np.copy(mask), fill_value=dest_nan_value) dat = np.copy(res_data[var].data) dat[mask == True] = dest_nan_value res_data[var] = np.ma.masked_array(dat, mask=np.copy(mask), fill_value=dest_nan_value) return res_data, dest_lon, dest_lat, gpis, timestamp, metadata
def resample_to_shape(source_file, region, sp_res, grid, prefix=None, nan_value=None, dest_nan_value=None, variables=None, shapefile=None): """ Resamples images and clips country boundaries Parameters ---------- source_file : str Path to source file. region : str Identifier of the region in the shapefile. If the default shapefile is used, this would be the FIPS country code. sp_res : int or float Spatial resolution of the shape-grid. grid : poets.grid.RegularGrid or poets.grid.ShapeGrid Grid to resample data to. prefix : str, optional Prefix for the variable in the NetCDF file, should be name of source nan_value : int, float, optional Not a number value of the original data as given by the data provider dest_nan_value : int or float, optional NaN value used in the final NetCDF file. variables : list of str, optional Variables to resample from original file. shapefile : str, optional Path to shape file, uses "world country admin boundary shapefile" by default. Returns ------- res_data : dict of numpy.arrays resampled image dest_lon : numpy.array longitudes of the points in the resampled image dest_lat : numpy.array latitudes of the points in the resampled image gpis : numpy.array grid point indices timestamp : datetime.date date of the image metadata : dict Metadata derived from input file. """ if prefix is not None: prefix += '_' fileExtension = os.path.splitext(source_file)[1].lower() if region == 'global': lon_min = -180 lon_max = 180 lat_min = -90 lat_max = 90 else: shp = Shape(region, shapefile) lon_min = shp.bbox[0] lon_max = shp.bbox[2] lat_min = shp.bbox[1] lat_max = shp.bbox[3] if fileExtension in ['.nc', '.nc3', '.nc4']: data_src, lon, lat, timestamp, metadata = nc.read_image(source_file, variables) if (lon_min >= lon.max() or lon_max <= lon.min() or lat_max <= lat.min() or lat_min >= lat.max()): return "No data" data, src_lon, src_lat = nc.clip_bbox(data_src, lon, lat, lon_min, lat_min, lon_max, lat_max) elif fileExtension in ['.h5']: data_src, lon, lat, timestamp, metadata = h5.read_image(source_file, variables) if (lon_min >= lon.max() or lon_max <= lon.min() or lat_max <= lat.min() or lat_min >= lat.max()): return "No data" data, src_lon, src_lat = nc.clip_bbox(data_src, lon, lat, lon_min, lat_min, lon_max, lat_max) elif fileExtension in imgfiletypes: data, src_lon, src_lat, timestamp, metadata = bbox_img(source_file, region, fileExtension, shapefile) if nan_value is not None: for key in data.keys(): data[key] = np.ma.array(data[key], mask=(data[key] == nan_value)) src_lon, src_lat = np.meshgrid(src_lon, src_lat) lons = grid.arrlon[0:grid.shape[0]] dest_lon, dest_lat = np.meshgrid(lons, np.unique(grid.arrlat)[::-1]) gpis = grid.get_bbox_grid_points(grid.arrlat.min(), grid.arrlat.max(), grid.arrlon.min(), grid.arrlon.max()) search_rad = 180000 * sp_res data = resample.resample_to_grid(data, src_lon, src_lat, dest_lon, dest_lat, search_rad=search_rad) res_data = {} path = [] if region != 'global': _, _, multipoly = shp._get_shape() for ring in multipoly: poly_verts = list(ring.exterior.coords) path.append(matplotlib.path.Path(poly_verts)) coords = [grid.arrlon, grid.arrlat[::-1]] coords2 = np.zeros((len(coords[0]), 2)) for idx in range(0, len(coords[0])): coords2[idx] = [coords[0][idx], coords[1][idx]] mask_old = path[0].contains_points(coords2) for key in data.keys(): if variables is not None: if key not in variables: del metadata[key] continue if region != 'global': for ring in path: mask_new = (ring.contains_points(coords2)) mask_rev = scipy.logical_or(mask_old, mask_new) mask_old = mask_rev mask_rev = mask_rev.reshape(dest_lon.shape) mask = np.invert(mask_rev) mask[data[key].mask == True] = True else: mask = data[key].mask if prefix is None: var = key else: var = prefix + key if metadata is not None: metadata[var] = metadata[key] if var != key: del metadata[key] res_data[var] = np.ma.masked_array(data[key], mask=np.copy(mask), fill_value=dest_nan_value) dat = np.copy(res_data[var].data) dat[mask == True] = dest_nan_value res_data[var] = np.ma.masked_array(dat, mask=np.copy(mask), fill_value=dest_nan_value) return res_data, dest_lon, dest_lat, gpis, timestamp, metadata