Example #1
0
def cal_grasp(msg, cam_pos_):
    points_ = pointclouds.pointcloud2_to_xyz_array(msg)
    points_ = points_.astype(np.float32)
    remove_white = False
    if remove_white:
        points_ = remove_white_pixel(msg, points_, vis=True)
    # begin voxel points
    n = n_voxel  # parameter related to voxel method
    # gpg improvements, highlights: flexible n parameter for voxelizing.
    points_voxel_ = get_voxel_fun(points_, n)
    if len(points_) < 2000:  # should be a parameter
        while len(points_voxel_) < len(points_) - 15:
            points_voxel_ = get_voxel_fun(points_, n)
            n = n + 100
            rospy.loginfo(
                "the voxel has {} points, we want get {} points".format(
                    len(points_voxel_), len(points_)))

    rospy.loginfo("the voxel has {} points, we want get {} points".format(
        len(points_voxel_), len(points_)))
    points_ = points_voxel_
    remove_points = False
    if remove_points:
        points_ = remove_table_points(points_, vis=True)
    point_cloud = pcl.PointCloud(points_)
    norm = point_cloud.make_NormalEstimation()
    norm.set_KSearch(30)  # critical parameter when calculating the norms
    normals = norm.compute()
    surface_normal = normals.to_array()
    surface_normal = surface_normal[:, 0:3]
    vector_p2cam = cam_pos_ - points_
    vector_p2cam = vector_p2cam / np.linalg.norm(vector_p2cam, axis=1).reshape(
        -1, 1)
    tmp = np.dot(vector_p2cam, surface_normal.T).diagonal()
    angel = np.arccos(np.clip(tmp, -1.0, 1.0))
    wrong_dir_norm = np.where(angel > np.pi * 0.5)[0]
    tmp = np.ones([len(angel), 3])
    tmp[wrong_dir_norm, :] = -1
    surface_normal = surface_normal * tmp
    select_point_above_table = 0.010
    #  modify of gpg: make it as a parameter. avoid select points near the table.
    points_for_sample = points_[np.where(
        points_[:, 2] > select_point_above_table)[0]]
    if len(points_for_sample) == 0:
        rospy.loginfo(
            "Can not seltect point, maybe the point cloud is too low?")
        return [], points_, surface_normal
    yaml_config['metrics']['robust_ferrari_canny']['friction_coef'] = value_fc
    if not using_mp:
        rospy.loginfo("Begin cal grasps using single thread, slow!")
        grasps_together_ = ags.sample_grasps(point_cloud,
                                             points_for_sample,
                                             surface_normal,
                                             num_grasps,
                                             max_num_samples=max_num_samples,
                                             show_final_grasp=show_final_grasp)
    else:
        # begin parallel grasp:
        rospy.loginfo("Begin cal grasps using parallel!")

        def grasp_task(num_grasps_, ags_, queue_):
            ret = ags_.sample_grasps(point_cloud,
                                     points_for_sample,
                                     surface_normal,
                                     num_grasps_,
                                     max_num_samples=max_num_samples,
                                     show_final_grasp=show_final_grasp)
            queue_.put(ret)

        queue = mp.Queue()
        num_grasps_p_worker = int(num_grasps / num_workers)
        workers = [
            mp.Process(target=grasp_task,
                       args=(num_grasps_p_worker, ags, queue))
            for _ in range(num_workers)
        ]
        [i.start() for i in workers]

        grasps_together_ = []
        for i in range(num_workers):
            grasps_together_ = grasps_together_ + queue.get()
        rospy.loginfo("Finish mp processing!")
    rospy.loginfo("Grasp sampler finish, generated {} grasps.".format(
        len(grasps_together_)))
    return grasps_together_, points_, surface_normal
def main():
	baxter_test = Baxter_Test()
	rate = rospy.Rate(baxter_test._rate)
	#retrieve point cloud data from Baxter
	point_cloud_msg = ros_topic_get("/camera/depth_registered/points", PointCloud2)
	point_cloud_array = pointclouds.pointcloud2_to_xyz_array(point_cloud_msg)
	point_cloud_array = transform_matrix(point_cloud_array, "/camera_rgb_optical_frame", "/base")
	point_cloud = pcl.PointCloud() #create new pcl PointCloud
	point_cloud.from_list(point_cloud_array) #import data to PointCloud from 2d matrix

	#Experimental code for the hand mounted camera
	print "looking up hand camera"
	"""f200_cloud_msg = ros_topic_get("/camera/depth/points", PointCloud2)
	print f200_cloud_msg
	point_cloud_array = pointclouds.pointcloud2_to_xyz_array(f200_cloud_msg)
	print point_cloud_array"""

	#filter data
	fil = point_cloud.make_passthrough_filter()
	fil.set_filter_field_name("x")
	fil.set_filter_limits(0.5, 1)
	cloud_filtered_x = fil.filter()

	fil = cloud_filtered_x.make_passthrough_filter()
	fil.set_filter_field_name("z")
	fil.set_filter_limits(-0.1, 0.5)
	cloud_filtered = fil.filter()

	#segment data
	seg = cloud_filtered.make_segmenter()
	seg.set_model_type(pcl.SACMODEL_PLANE)
	seg.set_method_type(pcl.SAC_RANSAC)
	seg.set_distance_threshold(0.03)
	indices, model = seg.segment()

	#remove table plane based on model
	object_cloud = filter_plane(model, cloud_filtered, 0.1)
	print object_cloud

	X = object_cloud.to_array()
	#our PCA only needs to deal with x-y plane, remove z values
	X = X[:,[0,1]]
	pca = PCA(n_components=2)
	X = pca.fit_transform(X)

	#calculate object centroid
	object_centroid = get_centroid(object_cloud)

	#calculate object bounding box
	bounding_box = fit_bounding_box(object_cloud, pca.components_, object_centroid)
	#baxter_test.move_left_to_coord(object_centroid)

	
	publisher = rospy.Publisher("/baxter_test", MarkerArray, queue_size = 10)
	marker_array = MarkerArray()

	
	#PCA vector sanity check (if needed)
	"""count = 0
	for vector in pca.components_:
		vector_marker = Marker()
		vector_marker.header.frame_id = "/base"
		vector_marker.header.stamp = rospy.Time(0)
		vector_marker.type = vector_marker.ARROW
		vector_marker.action = vector_marker.ADD
		start = Point()
		vector_marker.points = [createPoint(object_centroid[0], object_centroid[1], 0),
								createPoint(object_centroid[0] + vector[0], 
								object_centroid[1] + vector[1], 0)] 
		if count == 0:
			vector_marker.color.a = 1.0 #first vector green
			vector_marker.color.r = 0.0
			vector_marker.color.g = 1.0
			vector_marker.color.b = 0.0
		else:
			vector_marker.color.a = 1.0 #second vector blue
			vector_marker.color.r = 0.0
			vector_marker.color.g = 0.0
			vector_marker.color.b = 1.0
		vector_marker.scale.x = 0.01
		vector_marker.scale.y = 0.02
		vector_marker.id = count
		marker_array.markers.append(vector_marker)
		count += 1"""

	#continually do stuff
	while not rospy.is_shutdown():
		publisher.publish(marker_array)
		#baxter_test.move_left_to_coord(object_centroid)
		rate.sleep()
Example #3
0
def cal_grasp(msg, cam_pos_):
    """根据在线采集的点云计算候选的抓取姿态
    """
    #把pointcloud2类型的消息点云,转换为ndarray  points_
    points_ = pointclouds.pointcloud2_to_xyz_array(msg)
    #复制一份points_ ndarray对象,并将所有的点坐标转换为float32类型
    points_ = points_.astype(np.float32)

    remove_white = False
    if remove_white:
        points_ = remove_white_pixel(msg, points_, vis=True)
    # begin voxel points
    n = n_voxel  # parameter related to voxel method
    # gpg improvements, highlights: flexible n parameter for voxelizing.
    #这一句话执行的时候,不能打开虚拟机,否则容易卡住
    points_voxel_ = get_voxel_fun(points_, n)

    #当点云点数小于2000时
    if len(points_) < 2000:  # should be a parameter
        while len(points_voxel_) < len(points_) - 15:
            points_voxel_ = get_voxel_fun(points_, n)
            n = n + 100
            rospy.loginfo(
                "the voxel has {} points, we want get {} points".format(
                    len(points_voxel_), len(points_)))

    rospy.loginfo("the voxel has {} points, we want get {} points".format(
        len(points_voxel_), len(points_)))
    #
    points_ = points_voxel_
    remove_points = False
    #是否剔除支撑平面
    if remove_points:
        points_ = remove_table_points(points_, vis=True)
    #重新构造经过“降采样”的点云
    point_cloud = pcl.PointCloud(points_)

    print(len(points_))
    #构造法向量估计对象
    norm = point_cloud.make_NormalEstimation()
    tree = point_cloud.make_kdtree()
    norm.set_SearchMethod(tree)
    #以周边30个点作为法向量计算点
    norm.set_KSearch(10)  # critical parameter when calculating the norms
    normals = norm.compute()

    #将点云法向量转换为ndarry类型
    surface_normal = normals.to_array()

    surface_normal = surface_normal[:, 0:3]

    #每个点到  相机位置(无姿态)的向量             但是,感觉是相机到点的向量
    vector_p2cam = cam_pos_ - points_
    #print(vector_p2cam)
    #print(cam_pos_)
    """
    np.linalg.norm(vector_p2cam, axis=1) 默认求2范数,axis=1  代表按行向量处理,求多个行向量的2范数(求模)
    np.linalg.norm(vector_p2cam, axis=1).reshape(-1, 1)  将其调整为m行 1列

    整句话的含义是,将vector_p2cam归一化,单位化
    """
    vector_p2cam = vector_p2cam / np.linalg.norm(vector_p2cam, axis=1).reshape(
        -1, 1)

    #将表面法相与表面法相(都是单位向量)点乘,以备后面计算向量夹角
    tmp = np.dot(vector_p2cam, surface_normal.T).diagonal()
    #print(vector_p2cam)
    #print(surface_normal.T)
    #print(tmp)
    """
    np.clip(tmp, -1.0, 1.0)  截取函数,将tmp中的值,都限制在-1.0到1.0之间,大于1的变成1,小于-1的记为-1
    np.arccos() 求解反余弦,求夹角
    """
    angel = np.arccos(np.clip(tmp, -1.0, 1.0))
    #print(angel)

    #找到与视角向量夹角大于90度的角(认为法向量计算错误)
    wrong_dir_norm = np.where(angel > np.pi * 0.5)[0]
    #print(np.where(angel > np.pi * 0.5))
    #print(wrong_dir_norm)
    #print(len(wrong_dir_norm))

    #创建一个len(angel)行,3列的ndarry对象
    tmp = np.ones([len(angel), 3])
    #将法向量错误的行的元素都改写为-1
    tmp[wrong_dir_norm, :] = -1
    #与表面法相元素对元素相乘,作用是将"错误的"法向量的方向   扭转过来
    surface_normal = surface_normal * tmp
    #选取桌子以上2cm处的点作为检测点
    select_point_above_table = 0.020
    #modify of gpg: make it as a parameter. avoid select points near the table.
    #查看每个点的z方向,如果它们的点z轴方向的值大于select_point_above_table,就把他们抽出来
    points_for_sample = points_[np.where(
        points_[:, 2] > select_point_above_table)[0]]
    print(len(points_for_sample))
    if len(points_for_sample) == 0:
        rospy.loginfo(
            "Can not seltect point, maybe the point cloud is too low?")
        return [], points_, surface_normal
    yaml_config['metrics']['robust_ferrari_canny']['friction_coef'] = value_fc

    grasps_together_ = []

    if rospy.get_param("/robot_at_home") == "false":
        robot_at_home = False
    else:
        robot_at_home = True

    if not robot_at_home:
        rospy.loginfo("Robot is moving, waiting the robot go home.")
    elif not using_mp:
        rospy.loginfo("Begin cal grasps using single thread, slow!")
        grasps_together_ = ags.sample_grasps(point_cloud,
                                             points_for_sample,
                                             surface_normal,
                                             num_grasps_single_worker,
                                             max_num_samples=max_num_samples,
                                             show_final_grasp=show_final_grasp)
    else:
        # begin parallel grasp:
        rospy.loginfo("Begin cal grasps using parallel!")

        def grasp_task(num_grasps_, ags_, queue_):
            ret = ags_.sample_grasps(point_cloud,
                                     points_for_sample,
                                     surface_normal,
                                     num_grasps_,
                                     max_num_samples=max_num_samples,
                                     show_final_grasp=False)
            queue_.put(ret)

        queue = mp.Queue()

        #num_grasps_p_worker = int(num_grasps/num_workers)
        workers = [
            mp.Process(target=grasp_task,
                       args=(num_grasps_p_worker, ags, queue))
            for _ in range(num_workers)
        ]
        [i.start() for i in workers]

        grasps_together_ = []
        for i in range(num_workers):
            grasps_together_ = grasps_together_ + queue.get()
        rospy.loginfo("Finish mp processing!")

        if show_final_grasp and using_mp:
            ags.show_all_grasps(points_, grasps_together_)
            ags.show_points(points_, scale_factor=0.002)
            mlab.show()

    rospy.loginfo("Grasp sampler finish, generated {} grasps.".format(
        len(grasps_together_)))
    #返回抓取     场景的点      以及点云的表面法向量
    return grasps_together_, points_, surface_normal
Example #4
0
def main_cb(cloud_msg):
	#DECLARE GLOBAL VARIABLES
    global slot_count

    global final_data
    global all_hogs
    global train_surfaces
    global surfacesX
    global all_surf

    global labels
	#CONVERT TO XYZ
    rospy.loginfo('converting pointcloud %d to XYZ array ',slot_count)
    raw_data = pointclouds.pointcloud2_to_xyz_array(cloud_msg, remove_nans=True)
    
    #
    mode=0  # mode=0 -->COLLECT DATA mode=1 --> TRAIN AND TEST
    #BUILD CLUSTER

    filter_zeros=np.where(raw_data[:, 0] != 0)[0]
    clear_data = raw_data[filter_zeros,:] # ignore the zeros on X
    filter_zeros=np.where(clear_data[:, 1] != 0)[0]
    clear_data = clear_data[filter_zeros,:] # ignore the zeros on Y

    cluster_labels =np.zeros((len(clear_data),1),int)
    
    #% TRAINING
    eps = 0.5
    min_points = 5
    rospy.loginfo('call DBscan ')

    [core_samples,cluster_labels, n_clusters, human, surfacesX]=scikit_dbscan.dbscan(clear_data, eps, min_points,mode,False)

    clear_data=clear_data[core_samples,:]
    # SURFACE & HOG Features EXTRACTION

    all_surf.append(surfacesX)
    rospy.loginfo('Done.')
    
    #EXTRACT AND SAVE HOGS FEATURES
    rospy.loginfo('extract hogs for timeslot %d',slot_count)
    [hogs,hog_image] = myhog.hog(surfacesX)
    #pl.plot(hog_image)
    #pl.show(0.5)
    
    final_data.append(clear_data)
    labels.append(cluster_labels)
    human_detection.append(human)   
    all_hogs.append(hogs)
    
    rospy.loginfo('all_hogs length %d',len(all_hogs))
    rospy.loginfo('final_data length %d',len(final_data))
    rospy.loginfo('human_detection length %d',len(human_detection))
    
    if mode==0:
    	f = open("train_hogs.txt","a")
    	simplejson.dump(all_hogs,f)
    	f.close() 
    	f = open("train_classifications.txt","a")
    	simplejson.dump(all_human_detection,f)
    	f.close()
    if mode==1:
    	with open("train_hogs.txt") as f:
    		train_hogs = simplejson.load(f)
    	with open("train_classifications.txt") as f2:
  	   		train_labels = simplejson.load(f2)
  	   		X=array(train_hogs)
  	   	 	y=array(train_labels)
  	   	 	clf = svm.SVC()
  	   	 	clf.fit(X, y)
  	   	 	
  	   	 	#[p0V,p1V,pAb]= trainNB0(array(train_hogs),array(train_labels))
  	   	 	#print testEntry,'classified as: ',classifyNB(array(hogs),p0V,p1V,pAb)
    slot_count = slot_count + 1