Example #1
0
def approximate_environment(environment_points,
                            step=0.1,
                            min_number_of_approximated_points=30):
    temp = PointsObject()
    temp.add_points(environment_points)
    normals = temp.get_normals()
    found_shapes = shape_recognition.RANSAC(
        environment_points,
        normals,
        number_of_points_threshold=environment_points.shape[0] * 0.1,
        number_of_iterations=10,
        min_pc_number=environment_points.shape[0] * 0.3,
        number_of_subsets=10,
        use_planes=True,
        use_box=False,
        use_sphere=False,
        use_cylinder=True,
        use_cone=False)
    points = np.empty((0, 3))
    normals = np.empty((0, 3))
    for s in found_shapes:
        s = np.round(s / step) * step
        temp = PointsObject()
        temp.add_points(s)
        points = np.append(points, s, axis=0)
        normals = np.append(normals, temp.get_normals(), axis=0)
    return points, normals
Example #2
0
def generate_color_shapes(found_points, probabilities):
    blue = 0.7
    hsv = np.ones([probabilities.shape[0], 3])
    hsv[:, 0] = blue - probabilities / np.max(probabilities) * blue
    color = matplotlib.colors.hsv_to_rgb(hsv)
    object_to_return = PointsObject()
    object_to_return.add_points(found_points, color)
    return object_to_return
def save_point_cloud_from_VREP():
    depth_im, rgb_im = save_images_from_VREP("preDiploma_PC/")

    depth, rgb = image_processing.calculate_point_cloud(rgb_im, depth_im)

    current_object = PointsObject()
    current_object.add_points(depth, rgb)
    current_object.save_all_points("preDiploma_PC/", "box")
Example #4
0
def save_point_cloud_from_images():
    rgb_im = image_processing.load_image("preDiploma_PC/", "rgb_box_0.png")
    depth_im = image_processing.load_image("preDiploma_PC/", "depth_box_0.png",
                                           "depth")
    points, color = image_processing.calculate_point_cloud(
        rgb_im / 255, depth_im / 255)
    current_object = PointsObject()
    current_object.add_points(points, color)
    current_object.save_all_points("preDiploma_PC/", "box")
Example #5
0
def generate_trajectory(points, trajectory_fun, trajectory_param, ttime):
    current_points = points.get_points()[0]
    center = np.mean(current_points, axis=0)
    shapes_to_return = []
    center_trajectory = []
    shifts = trajectory_fun(trajectory_param, ttime)
    for shift in shifts:
        current_shape = PointsObject()
        current_shape.add_points(current_points + shift)
        shapes_to_return.append(current_shape)

        center_trajectory.append(center + shift)
    return shapes_to_return, np.asarray(center_trajectory)
Example #6
0
def check_data_generation():
    data_generation.save_images_from_VREP()
    depth_im = image_processing.load_image("3d_map/", "room_depth0.png",
                                           "depth")
    rgb_im = image_processing.load_image("3d_map/", "room_rgb0.png")

    xyz, rgb = image_processing.calculate_point_cloud(rgb_im / 255,
                                                      depth_im / 255)

    temp = PointsObject()
    temp.add_points(xyz, rgb)
    temp.save_all_points("3d_map/", "room")
    visualization.visualize([temp])
Example #7
0
def temp():
    ground_truth_vector = [0, 1, 0]
    vector_model = PointsObject()
    vector_model.add_points(np.asarray([ground_truth_vector]),
                            np.asarray([[1, 0, 0]]))
    vector_model_2 = PointsObject()
    vector_model_2.add_points(np.asarray([ground_truth_vector]))
    vector_model.rotate([1, 1, 1], math.radians(60))

    normal = vector_model.get_points()[0][0]
    angle = shape_recognition.angle_between_normals(ground_truth_vector,
                                                    normal)
    axis = np.cross(ground_truth_vector, normal)
    vector_model.rotate(axis, angle)

    visualization.visualize_object([vector_model, vector_model_2])
Example #8
0
def check_RANSAC():
    ball = download_point_cloud.download_to_object("preDiploma_PC/box.pcd")
    full_model = ball

    found_shapes = shape_recognition.RANSAC(full_model.get_points()[0],
                                            full_model.get_normals())
    shapes = [full_model]
    for _, s in enumerate(found_shapes):
        new_shape = PointsObject()
        new_shape.add_points(
            s,
            np.asarray([[random.random(),
                         random.random(),
                         random.random()]] * s.shape[0]))
        shapes.append(new_shape)
    visualization.visualize_object(shapes)
Example #9
0
def fill_the_shape_part():
    # save_points_cloud()
    ball = PointsObject()
    ball = download_point_cloud.download_to_object("preDiploma_PC/box.pcd")
    # visualization.visualize_object([ball])
    full_model = ball
    # full_model = download_point_cloud.download_to_object("models/blue conus.ply", 3000)
    # full_model.scale(0.1)
    # full_model.shift([0.01, 0.05, 0.01])
    # full_model.rotate([1, 1, 1], math.radians(35))
    #
    # full_model_2 = download_point_cloud.download_to_object("models/orange sphere.ply", 3000)
    # full_model_2.scale(0.1)
    # full_model_2.shift([-0.1, -0.1, 0.1])
    # full_model.rotate([1, 1, 1], math.radians(60))
    # full_model.add_points(full_model_2.get_points()[0], full_model_2.get_points()[1])
    #
    # full_model_2 = download_point_cloud.download_to_object("models/orange sphere.ply", 3000)
    # full_model_2.scale(0.1)
    # full_model_2.shift([-0.01, 0.1, 0.3])
    # full_model.rotate([1, 0, 1], math.radians(30))
    # full_model.add_points(full_model_2.get_points()[0], full_model_2.get_points()[1])
    # visualization.visualize_object([full_model])

    # temp()
    # temp_2()

    start = time.time()
    found_shapes = shape_recognition.RANSAC(full_model.get_points()[0],
                                            full_model.get_normals())
    print(time.time() - start)
    shapes = [full_model]
    for _, s in enumerate(found_shapes):
        new_shape = PointsObject()
        new_shape.add_points(
            s,
            np.asarray([[random.random(),
                         random.random(),
                         random.random()]] * s.shape[0]))
        shapes.append(new_shape)
    visualization.visualize_object(shapes)
Example #10
0
def point_cloud_from_VREP():
    import vrep_functions
    import image_processing
    """Function for checking if vrep_functions and PointsObject are working fine"""
    client_id = vrep_functions.vrep_connection()
    vrep_functions.vrep_start_sim(client_id)
    kinect_rgb_id = vrep_functions.get_object_id(client_id, 'kinect_rgb')
    kinect_depth_id = vrep_functions.get_object_id(client_id, 'kinect_depth')
    depth_im, rgb_im = vrep_functions.vrep_get_kinect_images(
        client_id, kinect_rgb_id, kinect_depth_id)
    image_processing.save_image(rgb_im, "preDiploma_PC/", 0, "rgb_box_")
    image_processing.save_image(depth_im, "preDiploma_PC/", 0, "depth_box_")

    print(depth_im.shape, rgb_im.shape)
    vrep_functions.vrep_stop_sim(client_id)

    depth, rgb = image_processing.calculate_point_cloud(rgb_im, depth_im)

    current_object = PointsObject()
    current_object.add_points(depth, rgb)
    current_object.save_all_points("preDiploma_PC/", "box")
Example #11
0
def generate_found_shapes(object,
                          found_centers,
                          probabilities_of_centers,
                          number_of_points=100):
    found_shapes = []
    blue = 0.7
    hsv = np.ones([probabilities_of_centers.shape[0], 3])
    hsv[:, 0] = blue - probabilities_of_centers / np.max(
        probabilities_of_centers) * blue
    rgb = matplotlib.colors.hsv_to_rgb(hsv)

    center = object.get_center()
    points = object.get_points()[0]
    points -= center

    for f, f_center in enumerate(found_centers):
        current_shape = PointsObject()
        current_rgb = np.zeros([points.shape[0], 3]) + rgb[f]
        current_shape.add_points(points + f_center, current_rgb,
                                 number_of_points)
        found_shapes.append(current_shape)
    return found_shapes
Example #12
0
def observation_momental():
    # load the model
    stable_object = download_point_cloud.download_to_object(
        "models/grey plane.ply", 3000)
    stable_object.scale(0.3)
    stable_object.rotate([90, 0, 0])

    falling_object = download_point_cloud.download_to_object(
        "models/red cube.ply", 3000)
    falling_object.scale(0.3)
    falling_object.shift([0, 3, 0])
    shapes = [falling_object]
    center = falling_object.get_center()

    # temp_1()

    # generate observation data
    rotation_params = np.asarray([[0, 70], [0, 50], [0, 80]])
    moving_params = np.asarray([[0, 0.1, -0.3], [0, -1.5, 0.1], [0, 1, 0]])
    observation_step_time = 0.2
    number_of_observations = 5
    observation_moments = np.arange(
        0, round(number_of_observations * observation_step_time, 3),
        observation_step_time)

    rotation_angles_gt, center_position_gt, moving_objects = create_movement_path(
        falling_object, rotation_params, moving_params, observation_moments)

    for i, m in enumerate(moving_objects):
        found_shapes = shape_recognition.RANSAC(m.get_points()[0],
                                                m.get_normals())
        moving_objects[i].set_points(found_shapes[-1])

    found_rotation, found_center_positions = find_observations(
        moving_objects, falling_object.get_center())

    print(center_position_gt)
    print(found_center_positions)

    shapes = []
    shapes += moving_objects
    # visualization.visualize(shapes)

    # find functions for xyz trajectory
    start = time.time()
    trajectory_functions_x = moving_prediction.find_functions(
        observation_moments, found_center_positions[:, 0])
    trajectory_functions_y = moving_prediction.find_functions(
        observation_moments, found_center_positions[:, 1])
    trajectory_functions_z = moving_prediction.find_functions(
        observation_moments, found_center_positions[:, 2])

    angle_functions_x = moving_prediction.find_functions(
        observation_moments, found_rotation[:, 0])
    angle_functions_y = moving_prediction.find_functions(
        observation_moments, found_rotation[:, 1])
    angle_functions_z = moving_prediction.find_functions(
        observation_moments, found_rotation[:, 2])
    print(time.time() - start)

    future_time = np.arange(
        0, round(number_of_observations * observation_step_time * 6, 3),
        observation_step_time)
    future_angles_gt, future_center_gt, _ = create_movement_path(
        falling_object, rotation_params, moving_params, future_time)
    visualization.show_found_functions(trajectory_functions_x,
                                       observation_moments,
                                       found_center_positions[:,
                                                              0], future_time,
                                       future_center_gt[:, 0], 't, s', 'x, m',
                                       'x coordinate of center')
    visualization.show_found_functions(trajectory_functions_y,
                                       observation_moments,
                                       found_center_positions[:,
                                                              1], future_time,
                                       future_center_gt[:, 1], 't, s', 'y, m',
                                       'y coordinate of center')
    visualization.show_found_functions(trajectory_functions_z,
                                       observation_moments,
                                       found_center_positions[:,
                                                              2], future_time,
                                       future_center_gt[:, 2], 't, s', 'z, m',
                                       'z coordinate of center')
    visualization.show_found_functions(angle_functions_x, observation_moments,
                                       found_rotation[:, 0], future_time,
                                       future_angles_gt[:, 0], 't, s',
                                       'angle, deg', 'x axis angle')
    visualization.show_found_functions(angle_functions_y, observation_moments,
                                       found_rotation[:, 1], future_time,
                                       future_angles_gt[:, 1], 't, s',
                                       'angle, deg', 'y axis angle')
    visualization.show_found_functions(angle_functions_z, observation_moments,
                                       found_rotation[:, 2], future_time,
                                       future_angles_gt[:, 2], 't, s',
                                       'angle, deg', 'z axis angle')

    # prediction part
    time_of_probability = 2.
    d_x = 0.1
    d_angle = 1
    threshold_p = 0.5

    prob_x, x = moving_prediction.probability_of_being_in_point(
        trajectory_functions_x, time_of_probability, d_x, True)
    prob_y, y = moving_prediction.probability_of_being_in_point(
        trajectory_functions_y, time_of_probability, d_x, True)
    prob_z, z = moving_prediction.probability_of_being_in_point(
        trajectory_functions_z, time_of_probability, d_x, True)

    prob_x_angle, x_angle = moving_prediction.probability_of_being_in_point(
        angle_functions_x, time_of_probability, d_angle, True)
    prob_y_angle, y_angle = moving_prediction.probability_of_being_in_point(
        angle_functions_y, time_of_probability, d_angle, True)
    prob_z_angle, z_angle = moving_prediction.probability_of_being_in_point(
        angle_functions_z, time_of_probability, d_angle, True)

    prediction_object = download_point_cloud.download_to_object(
        "models/red cube.ply", 3000)
    prediction_object.scale(0.3)
    prediction_points = prediction_object.get_points()[0]

    xyz_dict = moving_prediction.get_xyz_probabilities_from_angles_probabilities(
        prediction_points, x_angle, prob_x_angle, y_angle, prob_y_angle,
        z_angle, prob_z_angle, d_x, threshold_p)

    points, probabilities = moving_prediction.probability_of_all_points(
        xyz_dict, prob_x, x, prob_y, y, prob_z, z, threshold_p)

    if xyz_dict == -1:
        print("всё сломалось")
        sys.exit(0)

    high_probabilities = np.where(probabilities >= threshold_p, True, False)
    high_probable_points, high_probable_points_probabilities = points[
        high_probabilities], probabilities[high_probabilities]

    shapes.append(
        generate_color_shapes(high_probable_points,
                              high_probable_points_probabilities))

    # generate ground truth
    observation_moment = np.asarray([time_of_probability])

    _, _, moving_objects = create_movement_path(falling_object,
                                                rotation_params, moving_params,
                                                observation_moment)
    points = moving_objects[0].get_points()[0]
    gt_object = PointsObject()
    gt_object.add_points(points, falling_object.get_points()[1])
    shapes += [gt_object]

    visualization.visualize_object(shapes)
    get_histogram(high_probable_points, high_probable_points_probabilities)