def get_LLRdictWU(channel_plist, design_p, I, N, runsim, RI):
    LLRdictWU = {}
    G = len(I)
    stamp = datetime.now().strftime("%y-%m-%d_%H-%M-%S")
    f2name = "./simresults/llrsgndict" + "-" + str(N) + "-" + str(
        design_p).replace(".", "p") + "-" + stamp + ".txt"
    f2 = open(
        "./simresults/llrsgndict" + "-" + str(N) + "-" +
        str(design_p).replace(".", "p") + "-" + stamp + ".txt", 'w')
    n = int(ma.log(N, 2))

    for channel_p in channel_plist:
        print "\nrunning for " + str(channel_p) + "..."

        LLRdictWU[str(channel_p)] = []

        for i in range(runsim):
            UN = np.random.randint(2, size=G)
            FD = np.random.randint(2, size=N - len(I))
            #the following are intermediate steps of encoding
            # done to get VN
            # same as XN=ec.polarencodeG(UN,N,I,list(FD),False)
            VN = ec.formVN_u(list(UN), N, I, list(FD))
            XN = ec.polarencrec(VN, n - 1, n)
            YN = pl.BSCN(channel_p, XN)
            (llr, UN_hat) = ec.polarSCdecodeG(YN, N, design_p, I, FD, True)

            UN_decoded = ec.getUN(UN_hat, I, False)

            #---------------------------------

            LLRdictWU[str(channel_p)].append([
                ec.getchannel(llr, RI, False),
                "".join(str(x) for x in ec.getchannel(VN, RI, False)),
                "".join(str(x) for x in ec.getchannel(UN_hat, RI, False))
            ])

    json.dump(LLRdictWU, f2)
    for channel_p in channel_plist:
        with open(
                "./simresults/llrsgndict" + "-" + str(N) + "-" +
                str(design_p).replace(".", "p") + "-On-" +
                str(channel_p).replace(".", "p") + "-" + stamp + ".csv",
                'wb') as resultFile:
            wr = csv.writer(resultFile, dialect='excel')
            wr.writerow(["", "LLR in RI"] + [""] * (N - 1) + ["Data in RI"] +
                        ["Recovered Data in RI"])
            wr.writerow([""] + RI)
            for sim in range(runsim):
                wr.writerow(
                    [str(sim + 1)] + LLRdictWU[str(channel_p)][sim][0] +
                    [str('"') + LLRdictWU[str(channel_p)][sim][1] + str('"')] +
                    [str('"') + LLRdictWU[str(channel_p)][sim][2] + str('"')])
    return f2name
def perc_bad_channel_Irv_WU_llr(llr, F, LT, Frozen_data, use_func_for_LT):
    B = len(F)
    if use_func_for_LT:
        LT = f_Irv_abs(LT)
    LLRbadchannels = ec.getchannel(llr, F, False)
    SentBitchannels = Frozen_data
    perc = float(
        sum(
            f_Irv(llr, int(sentbit)) >= LT for llr, sentbit in zip(
                LLRbadchannels, SentBitchannels))) * 100 / B
    return perc
Example #3
0
def P_allgood(channel_plist, design_p, I, N, LT, runsim, RI, LLRdict_needed):
    LLRdict = {}
    Pdict = {}

    stamp = datetime.now().strftime("%y-%m-%d_%H-%M-%S")
    f1 = open(
        "./simresults/llrdict" + "-" + str(N) + "-" +
        str(design_p).replace(".", "p") + "-" + stamp + ".txt", 'w')

    FD = np.zeros(N - len(I), dtype=int).tolist()
    for channel_p in channel_plist:
        print "\nrunning for " + str(channel_p) + "..."

        Count_all_good = 0
        LLRdict[str(channel_p)] = []

        for i in range(runsim):

            UN = np.random.randint(2, size=len(I))
            UN_encoded = ec.polarencodeG(UN, N, I, list(FD), False)
            YN = pl.BSCN(channel_p, UN_encoded)
            (llr, d) = ec.polarSCdecodeG(YN, N, design_p, I, list(FD), True)
            L = abs(llr)

            #---------------------------------
            llr_Gmin = min(ec.getchannel(L, I, False))
            LLRdict[str(channel_p)].append(ec.getchannel(L, RI, False))
            Count_all_good += (llr_Gmin >= LT)

        Pdict[str(channel_p)] = float(Count_all_good) / runsim

    json.dump(LLRdict, f1)
    if LLRdict_needed:
        return (LLRdict, Pdict)
    else:
        return Pdict
Example #4
0
def frac_goodchannel(channel_plist, design_p, I, N, LT, runsim, RI,
                     LLRdict_needed):
    LLRdict = {}
    Fdict = {}
    G = len(I)
    stamp = datetime.now().strftime("%y-%m-%d_%H-%M-%S")
    #f1=open("./simresults/llrdict"+"-"+str(N)+"-"+str(design_p).replace(".","p")+"-"+stamp+".txt",'w')
    f2 = open(
        "./simresults/llrsgndict" + "-" + str(N) + "-" +
        str(design_p).replace(".", "p") + "-" + stamp + ".txt", 'w')
    FD = np.zeros(N - len(I), dtype=int).tolist()
    for channel_p in channel_plist:
        print "\nrunning for " + str(channel_p) + "..."

        LLRdict[str(channel_p)] = []
        Fdict[str(channel_p)] = []

        for i in range(runsim):

            UN = np.random.randint(2, size=len(I))
            UN_encoded = ec.polarencodeG(UN, N, I, list(FD), False)
            YN = pl.BSCN(channel_p, UN_encoded)
            (llr, d) = ec.polarSCdecodeG(YN, N, design_p, I, list(FD), True)
            L = abs(llr)

            #---------------------------------

            LLRdict[str(channel_p)].append(ec.getchannel(llr, RI, False))
            LLRgoodchannels = abs(np.array(
                LLRdict[str(channel_p)][i][:G])).tolist()
            num_goodchannel = sum(llr > LT for llr in LLRgoodchannels)
            Fdict[str(channel_p)].append(float(num_goodchannel) / N)

    #json.dump(LLRdict,f1);
    json.dump(LLRdict, f2)
    if LLRdict_needed:
        return (LLRdict, Fdict)
    else:
        return Fdict
Example #5
0
def perc_goodchannel_llr(llr, I, LT):
    G = len(I)
    L = abs(llr)
    LLRgoodchannels = ec.getchannel(L, I, False)
    perc = float(sum(llr >= LT for llr in LLRgoodchannels)) * 100 / G
    return perc
#Frozen data
D = np.zeros(N - len(I), dtype=int).tolist()

#---------------------------------------------finding lambda-threshold
lambda_thresholdlist = np.zeros(N)
lambda_threshold1list = np.zeros(N)
lambda_threshold2list = np.zeros(N)
for i in range(runsim_th):
    UN = np.random.randint(2, size=len(I))
    UN_encoded = ec.polarencodeG(UN, N, I, list(D), False)
    YN = pl.BSCN(design_p, UN_encoded)
    (llr, d) = ec.polarSCdecodeG(YN, N, design_p, I, list(D), True)
    L = abs(llr) / runsim_th
    lambda_thresholdlist = lambda_thresholdlist + L

lambda_threshold1 = min(ec.getchannel(lambda_thresholdlist, I, False))
lambda_threshold2 = max(ec.getchannel(lambda_thresholdlist, B, False))
lambda_threshold = (lambda_threshold1 + lambda_threshold2) / 2

print[lambda_threshold1, lambda_threshold2, lambda_threshold]
json.dump([lambda_threshold1, lambda_threshold2, lambda_threshold], f1)
f1.write("\n")

used_lambda_threshold = lambda_threshold1
print used_lambda_threshold
json.dump("used_lambda_threshold" + str(used_lambda_threshold), f1)
f1.write("\n")

json.dump("p,Pr(Gmin>thr),Pr(Fmax<thr)::Pr(gmin>Fmax)", f1)
f1.write("\n")
#-----------------------------------------checking channels
for channel_p in channel_plist:
    lambda_thresholdlist = np.zeros(N)
    lambda_Emin = 0

    for i in range(runsim_th):
        UN = np.random.randint(2, size=len(I))
        UN_encoded = ec.polarencodeG(UN, N, I, list(D), False)
        YN = pl.BSCN(channel_p, UN_encoded)

        (llr, d) = ec.polarSCdecodeG(YN, N, design_p, I, list(D), True)

        L = abs(llr) / runsim_th

        # expected value of min of good channels
        lambda_Emin += min(ec.getchannel(L, I, False))

        # expected Value of all channels(a vector)
        lambda_thresholdlist = lambda_thresholdlist + L

    lambda_Emindict[str(channel_p)] = lambda_Emin

    # minimum of expected value of goodchannels
    lambda_minE = min(ec.getchannel(lambda_thresholdlist, I, False))
    lambda_minEdict[str(channel_p)] = lambda_minE

    print "channel_p:" + str(channel_p)
    print "Lambda Min(E(LLR))" + str(lambda_minE)
    print "Lambda E(min(LLR))" + str(lambda_Emin)

    json.dump("channel_p:" + str(channel_p), f1);
Example #8
0
    for i in range(runsim):
        UN = np.random.randint(2, size=len(I))
        UN_encoded = ec.polarencodeG(UN, N, I, list(D), False)
        YN = pl.BSCN(psim, UN_encoded)
        (L, d) = ec.polarSCdecodeG(YN, N, p, I, list(D), True)
        #print abs(L)/runsim
        psim_llr_sum += abs(L) / runsim

    #psim_llr=[float(x)/runsim for x in psim_llr_sum]
    psim_llr = psim_llr_sum.tolist()
    print psim_llr
    if p == psim:
        #sets the threshold of lambda as the min of goodchannels
        #for the highest rate channel

        lambda_threshold = min(ec.getchannel(psim_llr, I, False))
        print ec.getchannel(psim_llr, I, False)

    llr_dict[psim] = psim_llr

print lambda_threshold

#---------------------------------------------------decodable condition
# all bad channels are within lambda threshold

HiBad = []
for ch in B:
    if llr_dict[psim][ch] >= lambda_threshold:
        HiBad.append(ch)

print "Decodable Condition:"