class PerceptronBinary( Binary ): """ Linear classifier with online learning and perceptron update (in primal form)""" def __init__( self, bias=False ): Binary.__init__(self, bias=bias ) self._learner = OnlineLearner(self) return def learn( self, data, epochs=1, start_iter=0, write_every_iter=False, modelpath=None, forget_first=False): instances = self._get_train_stream( data ) self._learner.learn( instances, epochs, start_iter, write_every_iter, modelpath, forget_first ) return def update( self, instance, prediction ): """ perceptron update rule: w = w + y * x """ w = self._weights fv = instance.get_fv() t_lab = int(instance.get_target_label()) p_lab = int(prediction.get_label()) error = (p_lab != t_lab) # ... if (error) : self._weights = w + dot(t_lab, fv) return error
class PerceptronBinary( Binary ): """ Linear classifier with online learning and perceptron update (in primal form)""" def __init__( self, bias=False ): Binary.__init__(self, bias=bias ) self._learner = OnlineLearner(self) return def learn( self, data, epochs=1, start_iter=0, write_every_iter=False, modelpath=None, forget_first=False): instances = self._get_train_stream( data ) self._learner.learn( instances, epochs, start_iter, write_every_iter, modelpath, forget_first ) return def update( self, instance, prediction ): """ perceptron update rule: NOOOOOP!!! -> w = w + (y - y^) * x """ w = self._weights # x_t fv = instance.get_fv() # y_t t_lab = int(instance.get_target_label()) # predict y_t p_lab = int(prediction.get_label()) error = (p_lab != t_lab) if error: self._weights += t_lab * fv return error
class PerceptronABinary(Binary): """ Linear classifier with online learning and perceptron update (in primal form)""" def __init__(self, bias=False): Binary.__init__(self, bias=bias) self._learner = OnlineLearner(self) self._w_average = self._weights def _decode(self, instance, weights): """ return prediction in {-1, 1} for current instance based on linear combination of given weight parameters """ fv = instance.get_fv() score = dot(self._w_average, fv) return Prediction(score) def resize_weights(self, instance): if len(self._weights) != self._feature_alphabet.size(): self._weights.resize(self._feature_alphabet.size()) self._w_average.resize(self._feature_alphabet.size()) return def learn(self, data, epochs=1, start_iter=0, write_every_iter=False, modelpath=None, forget_first=False): instances = self._get_train_stream(data) self._learner.learn(instances, epochs, start_iter, write_every_iter, modelpath, forget_first) return def update(self, instance, prediction): """ perceptron update rule: NOOOOOP!!! -> w = w + (y - y^) * x """ w = self._weights self._w_average += w # x_t fv = instance.get_fv() # y_t t_lab = int(instance.get_target_label()) # predict y_t p_lab = int(prediction.get_label()) error = (p_lab != t_lab) if error: self._weights += t_lab * fv return error
class PerceptronABinary( Binary ): """ Linear classifier with online learning and perceptron update (in primal form)""" def __init__( self, bias=False ): Binary.__init__(self, bias=bias ) self._learner = OnlineLearner(self) self._w_average = self._weights def _decode( self, instance, weights ): """ return prediction in {-1, 1} for current instance based on linear combination of given weight parameters """ fv = instance.get_fv() score = dot( self._w_average, fv ) return Prediction( score ) def resize_weights(self, instance): if len(self._weights) != self._feature_alphabet.size(): self._weights.resize(self._feature_alphabet.size()) self._w_average.resize(self._feature_alphabet.size()) return def learn( self, data, epochs=1, start_iter=0, write_every_iter=False, modelpath=None, forget_first=False): instances = self._get_train_stream( data ) self._learner.learn( instances, epochs, start_iter, write_every_iter, modelpath, forget_first ) return def update( self, instance, prediction ): """ perceptron update rule: NOOOOOP!!! -> w = w + (y - y^) * x """ w = self._weights self._w_average += w # x_t fv = instance.get_fv() # y_t t_lab = int(instance.get_target_label()) # predict y_t p_lab = int(prediction.get_label()) error = (p_lab != t_lab) if error: self._weights += t_lab * fv return error
class PerceptronBinary(Binary): """ Linear classifier with online learning and perceptron update (in primal form)""" def __init__(self, bias=False): Binary.__init__(self, bias=bias) self._learner = OnlineLearner(self) return def learn(self, data, epochs=1, start_iter=0, write_every_iter=False, modelpath=None, forget_first=False): instances = self._get_train_stream(data) self._learner.learn(instances, epochs, start_iter, write_every_iter, modelpath, forget_first) return def update(self, instance, prediction): """ perceptron update rule: NOOOOOP!!! -> w = w + (y - y^) * x """ w = self._weights # x_t fv = instance.get_fv() # y_t t_lab = int(instance.get_target_label()) # predict y_t p_lab = int(prediction.get_label()) error = (p_lab != t_lab) if error: self._weights += t_lab * fv return error
def __init__(self, bias=False): Binary.__init__(self, bias=bias) self._learner = OnlineLearner(self) self._w_average = self._weights
def __init__(self, bias=False): Binary.__init__(self, bias=bias) self._learner = OnlineLearner(self) return
def __init__( self, bias=False ): Binary.__init__(self, bias=bias ) self._learner = OnlineLearner(self) return
def __init__( self, bias=False ): Binary.__init__(self, bias=bias ) self._learner = OnlineLearner(self) self._w_average = self._weights
def __init__( self, bias=False, avgmode=False ): Binary.__init__(self, bias=bias, avgmode=avgmode ) self._learner = OnlineLearner(self) return