def parse_y(self, metrics): if not metrics: return metrics y_values = [] for value in metrics: if V1Optimization.maximize(self.config.metric.optimization): y_values.append(float(value)) else: y_values.append(-float(value)) return np.array(y_values)
def get_bracket_suggestions( self, bracket_iteration: int, configs=None, metrics=None ): """Reduce the experiments to restart.""" # Get the number of experiments to keep n_configs_to_keep = self.get_num_runs_to_keep( num_runs=len(configs), bracket_iteration=bracket_iteration, ) # Order the experiments experiments = zip(configs, metrics) experiments = sorted( experiments, key=lambda x: x[1], reverse=V1Optimization.maximize(self.config.optimization), ) # Keep n experiments config return [xp[0] for xp in experiments[:n_configs_to_keep]]