def before_run(self, run_context): # pylint: disable=unused-argument requests = {"global_episode": self._global_episode_tensor} if can_run_hook(run_context): self._request_summary = self._current_episode >= self._next_episode if self._request_summary: if self._get_summary_op() is not None: requests["summary"] = self._get_summary_op() return basic_session_run_hooks.SessionRunArgs(requests)
def before_run(self, run_context): # pylint: disable=unused-argument if can_run_hook(run_context) and self._timer.last_triggered_episode() is None: # We do write graph and saver_def at the first call of before_run. # We cannot do this in begin, since we let other hooks to change graph and # add variables in begin. Graph is finalized after all begin calls. training_util.write_graph( tf.get_default_graph().as_graph_def(add_shapes=True), self._checkpoint_dir, "graph.pbtxt") saver_def = self._get_saver().saver_def if self._get_saver() else None graph = tf.get_default_graph() meta_graph_def = meta_graph.create_meta_graph_def( graph_def=graph.as_graph_def(add_shapes=True), saver_def=saver_def) self._summary_writer.add_graph(graph) self._summary_writer.add_meta_graph(meta_graph_def) return basic_session_run_hooks.SessionRunArgs(self._global_episode_tensor)
def after_run(self, run_context, run_values): global_episode = run_values.results['global_episode'] if can_run_hook(run_context): if self._timer.should_trigger_for_episode(global_episode): original = np.get_printoptions() np.set_printoptions(suppress=True) elapsed_secs, _ = self._timer.update_last_triggered_episode(global_episode) if self._formatter: logging.info(self._formatter(run_values.results)) else: stats = [] for tag in self._tag_order: stats.append("%s = %s" % (tag, run_values.results[tag])) if elapsed_secs is not None: logging.info("%s (%.3f sec)", ", ".join(stats), elapsed_secs) else: logging.info("%s", ", ".join(stats)) np.set_printoptions(**original)
def after_run(self, run_context, run_values): if can_run_hook(run_context): return super(NanTensorHook, self).after_run(run_context, run_values)
def before_run(self, run_context): # pylint: disable=unused-argument if can_run_hook(run_context): return super(NanTensorHook, self).before_run(run_context) return None
def before_run(self, run_context): # pylint: disable=unused-argument self._should_trigger = can_run_hook(run_context) if self._should_trigger: return super(StepLoggingTensorHook, self).before_run(run_context) else: return None
def after_run(self, run_context, run_values): global_episode = run_values.results if can_run_hook(run_context) and self._timer.should_trigger_for_episode(global_episode): self._timer.update_last_triggered_episode(global_episode) self._save(global_episode, run_context.session)
def before_run(self, run_context): # pylint: disable=unused-argument if can_run_hook(run_context): return session_run_hook.SessionRunArgs(self._current_tensors) else: return session_run_hook.SessionRunArgs({'global_episode': self._global_episode_tensor})