def model_fn(features, labels, mode): model = plx.models.Regressor(mode, graph_fn=graph_fn, loss=MeanSquaredErrorConfig(), optimizer=SGDConfig(learning_rate=0.001), summaries='all') return model(features, labels)
def model_fn(features, labels, mode): model = plx.models.Regressor( mode, graph_fn=graph_fn, loss=AbsoluteDifferenceConfig(), optimizer=SGDConfig(learning_rate=0.5, decay_type='exponential_decay', decay_steps=10), summaries='all', name='xor') return model(features, labels)
def model_fn(features, labels, mode): model = plx.models.DDQNModel( mode, graph_fn=graph_fn, loss=HuberLossConfig(), num_states=env.num_states, num_actions=env.num_actions, optimizer=SGDConfig(learning_rate=0.01), exploration_config=DecayExplorationConfig(), target_update_frequency=10, summaries='all') return model(features, labels)
def test_sgd_config(self): config_dict = { 'learning_rate': 0.001, 'decay_type': "", 'decay_rate': 0., 'decay_steps': 100, 'start_decay_at': 0, 'stop_decay_at': 1e10, 'min_learning_rate': 1e-12, 'staircase': False, 'global_step': None, 'use_locking': False, 'name': 'optimizer' } config = SGDConfig.from_dict(config_dict) assert_equal_dict(config.to_dict(), config_dict)