Example #1
0
    def test_get_suggestions(self):
        params_config = SettingsConfig.from_dict({
            'concurrency': 2,
            'grid_search': {
                'n_experiments': 10
            },
            'matrix': {
                'feature': {
                    'values': [1, 2, 3]
                }
            }
        })
        manager = GridSearchManager(params_config=params_config)
        assert len(manager.get_suggestions()) == 3

        params_config = SettingsConfig.from_dict({
            'concurrency': 2,
            'grid_search': {
                'n_experiments': 10
            },
            'matrix': {
                'feature1': {
                    'values': [1, 2, 3]
                },
                'feature2': {
                    'linspace': [1, 2, 5]
                },
                'feature3': {
                    'range': [1, 5, 1]
                }
            }
        })
        manager = GridSearchManager(params_config=params_config)
        assert len(manager.get_suggestions()) == 10
Example #2
0
def validate_group_params_config(config, raise_for_rest=False):
    try:
        SettingsConfig.from_dict(config)
    except MarshmallowValidationError as e:
        if raise_for_rest:
            raise ValidationError(e)
        else:
            raise DjangoValidationError(e)
Example #3
0
    def test_get_suggestions_calls_sample(self):
        params_config = SettingsConfig.from_dict({
            'concurrency': 2,
            'random_search': {
                'n_experiments': 1
            },
            'matrix': {
                'feature1': {
                    'values': [1, 2, 3]
                },
                'feature2': {
                    'linspace': [1, 2, 5]
                },
                'feature3': {
                    'range': [1, 5, 1]
                }
            }
        })
        manager = RandomSearchManager(params_config=params_config)
        with patch.object(MatrixConfig, 'sample') as sample_mock:
            manager.get_suggestions()

        assert sample_mock.call_count == 3

        params_config = SettingsConfig.from_dict({
            'concurrency': 2,
            'random_search': {
                'n_experiments': 1
            },
            'matrix': {
                'feature1': {
                    'pvalues': [(1, 0.3), (2, 0.3), (3, 0.3)]
                },
                'feature2': {
                    'uniform': [0, 1]
                },
                'feature3': {
                    'qlognormal': [0, 0.5, 0.51]
                },
                'feature4': {
                    'range': [1, 5, 1]
                }
            }
        })
        manager = RandomSearchManager(params_config=params_config)
        with patch.object(MatrixConfig, 'sample') as sample_mock:
            manager.get_suggestions()

        assert sample_mock.call_count == 4
def validate(data):
    """Validates the data and creates the config objects"""
    if 'project' not in data:
        raise PolyaxonfileError(
            "The Polyaxonfile must contain a project section.")

    if 'model' not in data:
        raise PolyaxonfileError(
            "The Polyaxonfile must contain a model section.")

    validated_data = {
        'version': data['version'],
        'project': ProjectConfig.from_dict(data['project']),
        'model': ModelConfig.from_dict(data['model'])
    }
    if data.get('settings'):
        validated_data['settings'] = SettingsConfig.from_dict(data['settings'])

    if data.get('train'):
        validated_data['train'] = TrainConfig.from_dict(data['train'])

    if data.get('eval'):
        validated_data['eval'] = EvalConfig.from_dict(data['eval'])

    return validated_data
def validate_headers(spec, data):
    """Validates headers data and creates the config objects"""
    validated_data = {
        spec.VERSION: data[spec.VERSION],
        spec.PROJECT: ProjectConfig.from_dict(data[spec.PROJECT]),
    }
    if data.get(spec.SETTINGS):
        validated_data[spec.SETTINGS] = SettingsConfig.from_dict(
            data[spec.SETTINGS])

    return validated_data
Example #6
0
    def test_settings_config(self):
        config_dict = {
            'logging': LoggingConfig().to_dict(),
            'concurrent_experiments': 2,
        }
        config = SettingsConfig.from_dict(config_dict)
        assert_equal_dict(config.to_dict(), config_dict)

        # Add n_experiments
        config_dict['random_search'] = {'n_experiments': 10}
        config = SettingsConfig.from_dict(config_dict)
        assert_equal_dict(config.to_dict(), config_dict)

        # Raises for negative values
        config_dict['random_search']['n_experiments'] = -5
        with self.assertRaises(ValidationError):
            SettingsConfig.from_dict(config_dict)

        config_dict['random_search']['n_experiments'] = -0.5
        with self.assertRaises(ValidationError):
            SettingsConfig.from_dict(config_dict)

        # Add n_experiments percent
        config_dict['random_search']['n_experiments'] = 0.5
        with self.assertRaises(ValidationError):
            SettingsConfig.from_dict(config_dict)

        config_dict['random_search']['n_experiments'] = 5
        # Add early stopping
        config_dict['early_stopping'] = [
            {
                'metric': 'loss',
                'value': 0.1,
                'optimization': Optimization.MINIMIZE,
                'policy': EarlyStoppingPolicy.ALL
            },
            {
                'metric': 'accuracy',
                'value': 0.9,
                'optimization': Optimization.MAXIMIZE,
                'policy': EarlyStoppingPolicy.EXPERIMENT
            }
        ]
        config = SettingsConfig.from_dict(config_dict)
        assert_equal_dict(config.to_dict(), config_dict)
Example #7
0
    def test_get_suggestions(self):
        params_config = SettingsConfig.from_dict({
            'concurrency': 2,
            'random_search': {
                'n_experiments': 10
            },
            'matrix': {
                'feature1': {
                    'values': [1, 2, 3]
                },
                'feature2': {
                    'linspace': [1, 2, 5]
                },
                'feature3': {
                    'range': [1, 5, 1]
                }
            }
        })
        manager = RandomSearchManager(params_config=params_config)
        assert len(manager.get_suggestions()) == 10

        params_config = SettingsConfig.from_dict({
            'concurrency': 2,
            'random_search': {
                'n_experiments': 10
            },
            'matrix': {
                'feature1': {
                    'pvalues': [(1, 0.3), (2, 0.3), (3, 0.3)]
                },
                'feature2': {
                    'uniform': [0, 1]
                },
                'feature3': {
                    'qlognormal': [0, 0.5, 0.51]
                }
            }
        })
        manager = RandomSearchManager(params_config=params_config)
        assert len(manager.get_suggestions()) == 10
Example #8
0
    def test_get_suggestions_calls_to_numpy(self):
        params_config = SettingsConfig.from_dict({
            'concurrency': 2,
            'grid_search': {
                'n_experiments': 10
            },
            'matrix': {
                'feature': {
                    'values': [1, 2, 3]
                }
            }
        })
        manager = GridSearchManager(params_config=params_config)
        with patch.object(MatrixConfig, 'to_numpy') as to_numpy_mock:
            manager.get_suggestions()

        assert to_numpy_mock.call_count == 1

        params_config = SettingsConfig.from_dict({
            'concurrency': 2,
            'grid_search': {
                'n_experiments': 10
            },
            'matrix': {
                'feature1': {
                    'values': [1, 2, 3]
                },
                'feature2': {
                    'logspace': '0.01:0.1:5'
                }
            }
        })
        manager = GridSearchManager(params_config=params_config)
        with patch.object(MatrixConfig, 'to_numpy') as to_numpy_mock:
            manager.get_suggestions()

        assert to_numpy_mock.call_count == 2
Example #9
0
 def params_config(self):
     return SettingsConfig.from_dict(self.params) if self.params else None
Example #10
0
def validate_group_params_config(config):
    try:
        SettingsConfig.from_dict(config)
    except MarshmallowValidationError as e:
        raise ValidationError(e)
Example #11
0
    def setUp(self):
        super().setUp()
        params_config = SettingsConfig.from_dict({
            'concurrency': 2,
            'bo': {
                'n_iterations': 5,
                'n_initial_trials': 5,
                'metric': {
                    'name': 'loss',
                    'optimization': 'minimize'
                },
                'utility_function': {
                    'acquisition_function': 'ucb',
                    'kappa': 1.2,
                    'gaussian_process': {
                        'kernel': 'matern',
                        'length_scale': 1.0,
                        'nu': 1.9,
                        'n_restarts_optimizer': 0
                    }
                }
            },
            'matrix': {
                'feature1': {
                    'values': [1, 2, 3]
                },
                'feature2': {
                    'linspace': [1, 2, 5]
                },
                'feature3': {
                    'range': [1, 5, 1]
                }
            }
        })
        self.manager1 = BOSearchManager(params_config=params_config)

        params_config = SettingsConfig.from_dict({
            'concurrency': 2,
            'bo': {
                'n_iterations': 4,
                'n_initial_trials': 4,
                'metric': {
                    'name': 'accuracy',
                    'optimization': 'maximize'
                },
                'utility_function': {
                    'acquisition_function': 'ei',
                    'eps': 1.2,
                    'gaussian_process': {
                        'kernel': 'matern',
                        'length_scale': 1.0,
                        'nu': 1.9,
                        'n_restarts_optimizer': 0
                    }
                }
            },
            'matrix': {
                'feature1': {
                    'values': [1, 2, 3, 4, 5]
                },
                'feature2': {
                    'linspace': [1, 5, 5]
                },
                'feature3': {
                    'range': [1, 6, 1]
                },
                'feature4': {
                    'uniform': [1, 5]
                },
                'feature5': {
                    'values': ['a', 'b', 'c']
                },
            }
        })
        self.manager2 = BOSearchManager(params_config=params_config)
Example #12
0
    def setUp(self):
        super().setUp()
        params_config = SettingsConfig.from_dict({
            'concurrency': 2,
            'hyperband': {
                'max_iter': 10,
                'eta': 3,
                'resource': {
                    'name': 'steps',
                    'type': 'float'
                },
                'resume': False,
                'metric': {
                    'name': 'loss',
                    'optimization': 'minimize'
                }
            },
            'matrix': {
                'feature1': {
                    'values': [1, 2, 3]
                },
                'feature2': {
                    'linspace': [1, 2, 5]
                },
                'feature3': {
                    'range': [1, 5, 1]
                }
            }
        })
        self.manager1 = HyperbandSearchManager(params_config=params_config)

        params_config = SettingsConfig.from_dict({
            'concurrency': 2,
            'hyperband': {
                'max_iter': 81,
                'eta': 3,
                'resource': {
                    'name': 'size',
                    'type': 'int'
                },
                'resume': False,
                'metric': {
                    'name': 'loss',
                    'optimization': 'minimize'
                }
            },
            'matrix': {
                'feature1': {
                    'values': [1, 2, 3]
                },
                'feature2': {
                    'linspace': [1, 2, 5]
                },
                'feature3': {
                    'range': [1, 5, 1]
                },
                'feature4': {
                    'range': [1, 5, 1]
                }
            }
        })
        self.manager2 = HyperbandSearchManager(params_config=params_config)
Example #13
0
    def test_concrete_example(self):
        params_config = SettingsConfig.from_dict({
            'concurrency': 2,
            'bo': {
                'n_iterations': 5,
                'n_initial_trials': 10,
                'metric': {
                    'name': 'loss',
                    'optimization': 'minimize'
                },
                'utility_function': {
                    'acquisition_function': 'ucb',
                    'kappa': 2.576,
                    'gaussian_process': {
                        'kernel': 'matern',
                        'length_scale': 1.0,
                        'nu': 1.9,
                        'n_restarts_optimizer': 0
                    },
                    'n_warmup': 1,
                    'n_iter': 1
                }
            },
            'matrix': {
                'learning_rate': {
                    'uniform': [0.001, 0.01]
                },
                'dropout': {
                    'values': [0.25, 0.3]
                },
                'activation': {
                    'values': ['relu', 'sigmoid']
                }
            }
        })
        optimizer = BOOptimizer(params_config=params_config)

        configs = [{
            "num_epochs": 1,
            "num_steps": 300,
            "batch_size": 128,
            "learning_rate": 0.004544653508229265,
            "activation": "sigmoid",
            "dropout": 0.3
        }, {
            "num_epochs": 1,
            "num_steps": 300,
            "batch_size": 128,
            "learning_rate": 0.005615296199690899,
            "activation": "sigmoid",
            "dropout": 0.3
        }, {
            "num_epochs": 1,
            "num_steps": 300,
            "batch_size": 128,
            "learning_rate": 0.008784330869587902,
            "activation": "sigmoid",
            "dropout": 0.25
        }, {
            "num_epochs": 1,
            "num_steps": 300,
            "batch_size": 128,
            "learning_rate": 0.0058591075447430065,
            "activation": "sigmoid",
            "dropout": 0.3
        }, {
            "num_epochs": 1,
            "num_steps": 300,
            "batch_size": 128,
            "learning_rate": 0.007464080062927171,
            "activation": "sigmoid",
            "dropout": 0.25
        }, {
            "num_epochs": 1,
            "num_steps": 300,
            "batch_size": 128,
            "learning_rate": 0.0024763129571936738,
            "activation": "relu",
            "dropout": 0.3
        }, {
            "num_epochs": 1,
            "num_steps": 300,
            "batch_size": 128,
            "learning_rate": 0.0074881581817925705,
            "activation": "sigmoid",
            "dropout": 0.3
        }, {
            "num_epochs": 1,
            "num_steps": 300,
            "batch_size": 128,
            "learning_rate": 0.003360405779075163,
            "activation": "relu",
            "dropout": 0.3
        }, {
            "num_epochs": 1,
            "num_steps": 300,
            "batch_size": 128,
            "learning_rate": 0.009916904455792564,
            "activation": "sigmoid",
            "dropout": 0.25
        }, {
            "num_epochs": 1,
            "num_steps": 300,
            "batch_size": 128,
            "learning_rate": 0.000881723263162717,
            "activation": "sigmoid",
            "dropout": 0.3
        }]
        metrics = [
            2.3018131256103516, 2.302884340286255, 2.3071441650390625,
            2.3034636974334717, 2.301487922668457, 0.05087224021553993,
            2.3032383918762207, 0.06383182853460312, 2.3120572566986084,
            0.7617478370666504
        ]

        optimizer.add_observations(configs=configs, metrics=metrics)
        suggestion = optimizer.get_suggestion()

        assert 0.001 <= suggestion['learning_rate'] <= 0.01
        assert suggestion['dropout'] in [0.25, 0.3]
        assert suggestion['activation'] in ['relu', 'sigmoid']