Example #1
0
def getAveragePolygonConditions(digits, eps):
    pT.containsPoint_eps = eps
    pT.convexRun_eps = eps
    repeats = 0
    result = 0
    while (repeats < 10000):

        n = 0

        K = []
        L = []
        # error possible or is len(K) == 0 checked first?
        while len(K) * len(L) == 0 or not pT.isConvex(K) or not pT.isConvex(
                L) or not pT.isConvexRun(K) or not pT.isConvexRun(L):
            P = rP.getRandomNoncenteredPolarPolygon(math.floor(4))
            Q = rP.getRandomNoncenteredPolarPolygon(math.floor(4))
            K = rP.getCartesian(P)
            L = rP.getCartesian(Q)
            rP.roundVertices(K, digits)
            rP.roundVertices(L, digits)
            n += 1
        result += n
        repeats += 1
        if repeats % 1000 == 0:
            print(repeats)
            pT.plotPoly(K, 'r')
            pT.plotPoly(L, 'g')

    print(result / repeats)
Example #2
0
def normalsTest(repeats, verticesNumber, test_eps):
    for i in range(repeats):
        P = rP.getRandomPolygon(verticesNumber)
        coneVol = cV.getConeVol(P)
        diff = math.fabs(getSumOuterNormal(P) - verticesNumber)
        if diff > test_eps:
            #print( P )
            #print( diff )
            normalNormsPrint(coneVol)
            print(' normalsTest failed at')
            print(len(coneVol))
            print(len(P))
            pT.plotPoly(P, 'r')
            break
Example #3
0
def compareResults(P, alternativeParams):
    cD = cV.getConeVol(P)
    alternatePoint = cV.gamma(cD, alternativeParams)

    P_alternative = polygonReconstruct(cD, alternatePoint)
    cD_alternative = cV.getConeVol(P_alternative)

    pT.plotPoly(P, 'b')
    pT.plotPoly(P_alternative, 'r')
    print(len(P_alternative))
    print('difference in coneVolume matrices')
    print(M.distMatrix(M.Matrix(cD), M.Matrix(cD_alternative)))
    print(' sigma value of alternative params')
    print(cV.sigma(alternativeParams, cD))
Example #4
0
def logMinRationalAutoTest(repeats, digits, eps_logMinRational):
    n = 0
    logMinTrue = 0
    logMinFalse = 0
    logMinTriangleFalse = 0
    centeredFails = 0
    while n < repeats:

        K = rRP.getRandomRoundedPolygon(5, digits)
        L = rRP.getRandomRoundedPolygon(6, digits)

        R = rRP.getRationalWithDigits(K, digits)
        S = rRP.getRationalWithDigits(L, digits)

        info_R = rP.getCenterAndVolumeRational(R)
        info_S = rP.getCenterAndVolumeRational(S)
        rP.translateRational(R, info_R[0])
        rP.translateRational(S, info_S[0])
        info_R = rP.getCenterAndVolumeRational(R)
        info_S = rP.getCenterAndVolumeRational(S)

        logMinValues = logMinTestRationalPreparation(R, S)
        while (True):
            try:
                if not logMinTestRational2(
                        logMinValues,
                        eps_logMinRational) and not logMinTestRational1(
                            logMinValues, eps_logMinRational
                        ) and not logMinTestRationalNormalizing(
                            logMinValues, eps_logMinRational):
                    #centeredNorm = info_R[0][0] * info_R[0][0] + info_R[0][1] * info_R[0][1] + info_S[0][0] * info_S[0][0] + info_S[0][1] * info_S[0][1]
                    #print( centeredNorm )
                    if len(R) == 3 or len(S) == 3:
                        #print( 'das darf nicht sein')
                        rP.printRationalPolygon(R)
                        rP.printRationalPolygon(S)
                        pT.plotPoly(K, 'r')
                        pT.plotPoly(L, 'g')
                        logMinTriangleFalse += 1
                        break
                    else:
                        print('logMin Gegenbeispiel')
                        rP.printRationalPolygon(R)
                        rP.printRationalPolygon(S)
                        pT.plotPoly(R, 'r')
                        pT.plotPoly(S, 'g')
                        logMinFalse += 1
                else:
                    logMinTrue += 1

                n = n + 1
                break
            except OverflowError or ZeroDivisionError:
                break
    print('done')
    print([logMinTrue, logMinFalse, centeredFails, logMinTriangleFalse])
Example #5
0
def logMinRoundAutoTest(repeats, roundMethod, digits, bringInPosition,
                        getPosition, eps_position, eps_volume, eps_normals,
                        eps_logMin):
    n = 0
    logMinTrue = 0
    logMinFalse = 0
    logMinTriangleFalse = 0
    while n < repeats:
        P = rP.getRandomNoncenteredPolarPolygon(
            math.floor(10 * random.random()) + 4)
        Q = rP.getRandomNoncenteredPolarPolygon(
            math.floor(10 * random.random()) + 4)
        K = rP.getCartesian(P)
        L = rP.getCartesian(Q)
        roundMethod(K, digits)
        roundMethod(L, digits)

        #because of roundig, convexity can be lost and support function can get negativ
        # because of rounding, two edges can be the same.
        # and then norm vector will be [] or something ? Because a type error ouccurs
        while (True):
            try:
                if not logMinTest(K, L, bringInPosition, eps_logMin):

                    if pT.isConvex(K) and pT.isConvex(L) and pT.isConvexRun(
                            K) and pT.isConvexRun(L):
                        if M.norm(getPosition(K)) + M.norm(
                                getPosition(L)) < eps_position:
                            if math.fabs(rP.getVolume(K) - 1) + math.fabs(
                                    rP.getVolume(L) - 1) < eps_volume:
                                # which bound is sufficient for a stable logMin calculation? a bound of 0.00003 seems to be always fulfilled...
                                if pT.getWorsteNormalsDirection(
                                        K) < eps_normals:
                                    if len(K) == 3 or len(L) == 3:
                                        print('das darf nicht sein')
                                        print(K)
                                        print(L)
                                        pT.plotPoly(K, 'r')
                                        pT.plotPoly(L, 'g')
                                        logMinTriangleFalse += 1
                                    else:
                                        print('logMin Gegenbeispiel')
                                        print(K)
                                        print(L)
                                        pT.plotPoly(K, 'r')
                                        pT.plotPoly(L, 'g')
                                        logMinFalse += 1
                else:
                    logMinTrue += 1
                break
            except TypeError:
                break
        n = n + 1
    print('done')
    print([logMinTrue, logMinFalse, logMinTriangleFalse])
Example #6
0
def logMinTest(orderedCartPolygon_1, orderedCartPolygon_2, bringInPosition,
               eps_prod):
    K = orderedCartPolygon_1
    L = orderedCartPolygon_2
    bringInPosition(K)
    bringInPosition(L)
    rP.makeUnitVolume(K)
    rP.makeUnitVolume(L)
    # not sure if makeUnitVolume destroys the centered property... it is clear that it needs it for the normalization of volume
    bringInPosition(K)
    bringInPosition(L)
    coneVol = cV.getConeVol(K)
    #print( coneVol )

    prod = 1

    for i in range(len(K)):
        # Reihenfolge der Normalenvektoren sollte jetzt egal sein
        u = [coneVol[i - 1][0], coneVol[i - 1][1]]
        h_1 = rP.supportFunctionCartesianCentered(L, u)
        h_2 = rP.supportFunctionCartesianCentered(K, u)
        quotient = h_1 / h_2
        if quotient == 0:
            print('quotient von logMin war gleich 0...')
            print(u)
            print(L[i - 1])
            print(K[i - 1])
        #print( quotient)
        #print( K[ i - 1] )
        #print( u )
        if quotient >= 0:
            prod = prod * math.pow(quotient, coneVol[i - 1][2])
        else:
            print(' quotient von logMin war negativ')
            print(u)
            print(coneVol[i - 1][2])
            pT.plotPoly(K, 'r')
            pT.plotPoly(L, 'g')
    if prod + eps_prod >= 1:
        return True
    else:
        print(1 - prod)
        return False
Example #7
0
def logMinAutoTest(repeats, bringInPosition, getPosition, eps_position,
                   eps_volume, eps_normals, eps_logMin):
    n = 0
    logMinTrue = 0
    logMinFalse = 0
    logMinTriangleFalse = 0
    while n < repeats:
        P = rP.getRandomNoncenteredPolarPolygon(math.floor(3))
        Q = rP.getRandomNoncenteredPolarPolygon(math.floor(4))
        K = rP.getCartesian(P)
        L = rP.getCartesian(Q)
        if not logMinTest(K, L, bringInPosition, eps_logMin):

            if pT.isConvex(K) and pT.isConvex(L) and pT.isConvexRun(
                    K) and pT.isConvexRun(L):
                if M.norm(getPosition(K)) + M.norm(
                        getPosition(L)) < eps_position:
                    if math.fabs(rP.getVolume(K) - 1) + math.fabs(
                            rP.getVolume(L) - 1) < eps_volume:
                        # which bound is sufficient for a stable logMin calculation? a bound of 0.00003 seems to be always fulfilled...
                        if pT.getWorsteNormalsDirection(K) < eps_normals:
                            if len(K) == 3 or len(L) == 3:
                                print('das darf nicht sein')
                                print(K)
                                print(L)
                                pT.plotPoly(K, 'r')
                                pT.plotPoly(L, 'g')
                                logMinTriangleFalse += 1
                            else:
                                print('logMin Gegenbeispiel')
                                print(K)
                                print(L)
                                pT.plotPoly(K, 'r')
                                pT.plotPoly(L, 'g')
                                logMinFalse += 1
        else:
            logMinTrue += 1

        n = n + 1
    print('done')
    print([logMinTrue, logMinFalse, logMinTriangleFalse])
Example #8
0
               [-0.7554665420833026, -1.2359424238428496]]
L_CubeFailD = [[0.5789479878788385, 2.5862453164905914],
               [0.24361326317280213, 2.086601346490969],
               [-0.536719358231424, -2.6111171677640317],
               [-0.4582006091393752, -2.9754640716418455]]

#pT.plotPoly( L_2 , 'g')
#pT.plotPoly( rP.getCartesian(P_2) , 'g')
#pT.plotPoly( rP.getCartesian(Q_2) , 'g')
#print( pT.isConvex( K_3 ))
#print( pT.isConvexRun( K_3 ))
#print( pT.isConvex( L_3 ))
#print( pT.isConvexRun( L_3 ))
#print( rP.getCenter(K_2))
#print( rP.getCenter(L_2))
#print( logMin.logMinTest( P_2 , Q_2 ) )
test_1 = K_2
test_2 = L_2

pT.plotPoly(K_44, 'r')
pT.plotPoly(L_44, 'g')
pT.plotPoly(K_78, 'r')
pT.plotPoly(L_78, 'g')
pT.plotPoly(K_68, 'r')
pT.plotPoly(L_68, 'g')

#testRun with 1000 repeats for logMin with triangle yielded:
# [658, 0, 0] if both are centered
#
# [694, 0, 0] if both are barycentered