Example #1
0
    def __init__(self, degree):

        b_degree = degree - 3
        x = Symbol('x')
        poly_set = leg.basis_functions(deg=degree)
        pts0 = gauss_legendre_points(b_degree+1)[1:-1]
        pts1 = np.array([-1., 1.])
        # The coefficient matrix
        B = np.zeros((degree+1, degree+1))
        B[:, 0] = [(-1)**k for k in range(degree+1)] # Values are (-1)
        B[:, 1] = np.ones(degree+1)                  # Values at (1)

        # Val at -1, val at 1, dval at -1, dval at 1, the rest of polyevaluas.
        for row, f in enumerate(poly_set):
            vals = lambdify(x, f, 'numpy')(pts0)
            if isinstance(vals, (int, float)): vals = vals*np.ones(len(pts0))
            dvals = lambdify(x, f.diff(x, 1), 'numpy')(pts1)
            if isinstance(dvals, (int, float)): dvals = dvals*np.ones(len(pts1))

            B[row, 2:4] = dvals
            B[row, 4:] = vals

        # Invert to get the coefficients of the nodal basis
        self.alpha = np.linalg.inv(B)
        # Having coeffcient comes in handy if some matrix M is given w.r.t
        # poly_set basis then alpha.M.alpha.T is the matrix represented in
        # nodal basis

        # Symbolic nodal basis
        self.sym_basis = [sum(c*f for c, f in zip(row, poly_set))
                          for row in self.alpha]
        # For numerical evaluation the row in alpha are coeffcients of Legendre
        # polynomials so we can use legval
        
        # Finally remember the dofs as coordinates val, val, dval, dval
        self.dofs = np.hstack([pts1, pts1, pts0])

        # And my finite element
        self.cell = ReferenceIntervalCell()

        # HACK computing df/dx without the derivatives. This is exact for P3 and
        # lower. Represent the L(f) = df/dx(p) = \int Riesz(L) * f dx
        # Riesz(L) = l is a polynomial of degree 3-compute its coeficients
        # They are given by mass matrix of the nodal basis
        xq, wq = np.polynomial.legendre.leggauss(degree+1)
        M = self.alpha.dot(leg.mass_matrix(degree).dot(self.alpha.T))
        beta = np.linalg.inv(M)
        # Now I have expansion w.r.t nodal. Combine with alpha to get Legendre
        # beta = beta.dot(self.alpha)
        # beta[2:4] are the coefs of df/dx eval at -1 and 1. Need them only at
        # quadrature points
        self.riesz = (np.polynomial.legendre.legval(xq, beta[2].dot(self.alpha)),
                      np.polynomial.legendre.legval(xq, beta[3].dot(self.alpha)))
        # Remember these for later evaluations
        self.quad = xq, wq
Example #2
0
def _solve(mode, points, degree, n_cells, u, f):
    '''
    In mode == convergence:
    Solve -u`` = f with dirichet bcs bdry of (-1, 1) given by exact solution.
    The Vh space is CG_space of degree elements and n_cells. Return hmin, error
    for convergence computation.

    In mode == cond:
    Just return h and the matrix A.
    '''
    # Element. The polynomial space is spanned by Legendre basis
    poly_set = leg.basis_functions(degree)
    dof_set = points(degree)
    element = LagrangeElement(poly_set, dof_set)

    # Mesh
    mesh = IntervalMesh(a=-1, b=1, n_cells=n_cells)

    # Space
    V = FunctionSpace(mesh, element)
    bc = DirichletBC(V, u)

    # Need mass matrix to intefrate the rhs
    Mpoly_matrix = leg.mass_matrix(degree)
    Mget_geom_tensor = lambda cell: 1./cell.Jac
    M = assemble_matrix(V, Mpoly_matrix, Mget_geom_tensor, timer=0)
    
    # Stiffness matrix for Laplacian
    Apoly_matrix = leg.stiffness_matrix(degree)
    Aget_geom_tensor = lambda cell: cell.Jac
    A = assemble_matrix(V, Apoly_matrix, Aget_geom_tensor, timer=0)
   
    # Interpolant of source
    fV = V.interpolate(f)
    # Integrate in L2 to get the vector
    b = M.dot(fV.vector)
    
    # Apply boundary conditions
    bc.apply(A, b, True)
    x = spsolve(A, b)

    if mode == 'condition':
        return mesh.hmin(), A

    # As function
    uh = Function(V, x)
   
    # Error norm
    # Higher order DG element
    fine_degree = degree + 3
    poly_set = leg.basis_functions(fine_degree)
    dof_set = chebyshev_points(fine_degree)
    element = LagrangeElement(poly_set, dof_set)
    # THe space
    V_fine = FunctionSpace(mesh, element, 'L2')
    # Interpolate exact solution to fine
    u_fine = V_fine.interpolate(u)
    # Interpolate approx solution fine
    uh_fine = V_fine.interpolate(uh)

    # Difference vector
    e = u_fine.vector - uh_fine.vector
    # Need matrix for integration of H10 norm
    Apoly_matrix = leg.stiffness_matrix(fine_degree)
    A_fine = assemble_matrix(V_fine, Apoly_matrix, Aget_geom_tensor, timer=1)
    # Integrate the error
    e = sqrt(np.sum(e*A_fine.dot(e)))
    # Mesh size
    hmin = mesh.hmin()

    return hmin, e
Example #3
0
def cg_optimal_dofs_restricted(deg, vary=0):
    '''
    What are optimal dofs that give smallest condition number in L^2 norm.
    By CG I mean that I constraint two dofs to be at (-1, 1). The remaining
    deg-1 points are to be determined. For even degrees symmetry is dof at 0 is
    also forced
    
    For vary None: the symmetry is used and `all` the points are used for
    search, i.e. this is multi-d problem.

    For vary=int: that guy and its mirror are changed, i.e. this is
    1-d optimization problem.
    '''
    poly_set = leg.basis_functions(deg)
    M = leg.mass_matrix(deg)

    # Only allow negative (make life easier for mirroring) and not midpoint or -1
    if vary: assert 0 < vary < (deg/2 + 1 if deg % 2 else deg/2)

    # Want to minimize this
    def cond_number(x):
        # 2: [-1, y0, -1]
        # (3, 4): [-1, y0, -y0, -1], [-1, -y0, 0, y0, 1],
        # (5, 6): [-1, y0, y1, -y1, -y0, -1], [-1, y0, y1, 0, -y1, -y0, -1]
        # One-d optimzation
        if vary:
            x_ = chebyshev_points(deg)
            x_[vary] = x
            x_[deg-vary] = -x
            dof_set = x_
        # Multi-d optimization
        else:
            if deg == 2:
                dof_set = np.r_[-1, x, 1]
            # Combine no zero
            elif deg % 2 == 1:
                dof_set = np.r_[-1, x, -x[::-1], 1]
            # Combine w/ zero
            else:
                dof_set = np.r_[-1, x, 0, -x[::-1], 1]

        element = LagrangeElement(poly_set, dof_set)
        alpha = element.alpha
        M_  = alpha.dot(M.dot(alpha.T))
        return np.linalg.cond(M_)

    # Initial guess
    # 1d optim
    x0 = chebyshev_points(deg)
    if vary:
        x0 = x0[vary]
    else:
        # Multi-d optim
        if deg == 2:
            x0 = x0[1]
        # Combine no zero
        elif deg % 2 == 1:
            x0 = x0[1:deg/2+1]
        else:
            x0 = x0[1:deg/2]
    
    # Optimize
    res = minimize(cond_number, x0)

    return res, x0, cond_number(x0)
Example #4
0
def solve(n_cells, degree=3, with_plot=False):
    # Problem
    w = 3 * np.pi
    x = Symbol("x")
    u = sin(w * x)
    f = -u.diff(x, 2)

    # As Expr
    u = Expression(u)
    f = Expression(f)

    # Space
    # element = HermiteElement(degree)
    poly_set = leg.basis_functions(degree)
    dof_set = chebyshev_points(degree)
    element = LagrangeElement(poly_set, dof_set)

    mesh = IntervalMesh(a=-1, b=1, n_cells=n_cells)
    V = FunctionSpace(mesh, element)
    bc = DirichletBC(V, u)

    # Need mass matrix to intefrate the rhs
    M = assemble_matrix(V, "mass", get_geom_tensor=None, timer=0)
    # NOTE We cannot you apply the alpha transform idea because the functions
    # are mapped with this selective weight on 2nd, 3rd functions. So some rows
    # of alpha would have to be multiplied by weights which are cell specific.
    # And then on top of this there would be a dx = J*dy term. Better just to
    # use the qudrature representations
    # Mpoly_matrix = leg.mass_matrix(degree)
    # M_ = assemble_matrix(V, Mpoly_matrix, Mget_geom_tensor, timer=0)

    # Stiffness matrix for Laplacian
    A = assemble_matrix(V, "stiffness", get_geom_tensor=None, timer=0)
    # NOTE the above
    # Apoly_matrix = leg.stiffness_matrix(degree)
    # A_ = assemble_matrix(V, Apoly_matrix, Aget_geom_tensor, timer=0)

    # Interpolant of source
    fV = V.interpolate(f)
    # Integrate in L2 to get the vector
    b = M.dot(fV.vector)

    # Apply boundary conditions
    bc.apply(A, b, True)
    x = spsolve(A, b)

    # As function
    uh = Function(V, x)

    # This is a (slow) way of plotting the high order
    if with_plot:
        fig = plt.figure()
        ax = fig.gca()
        uV = V.interpolate(u)

        for cell in Cells(mesh):
            a, b = cell.vertices[0, 0], cell.vertices[1, 0]
            x = np.linspace(a, b, 100)

            y = uh.eval_cell(x, cell)
            ax.plot(x, y, color=random.choice(["b", "g", "m", "c"]))

            y = uV.eval_cell(x, cell)
            ax.plot(x, y, color="r")

            y = u.eval_cell(x, cell)
            ax.plot(x, y, color="k")

        plt.show()

    # Error norm in CG high order
    fine_degree = degree + 3
    poly_set = leg.basis_functions(fine_degree)
    dof_set = chebyshev_points(fine_degree)
    element = LagrangeElement(poly_set, dof_set)

    V_fine = FunctionSpace(mesh, element)
    # Interpolate exact solution to fine
    u_fine = V_fine.interpolate(u)
    # Interpolate approx solution fine
    uh_fine = V_fine.interpolate(uh)

    # Difference vector
    e = u_fine.vector - uh_fine.vector

    # L2
    if False:
        Apoly_matrix = leg.mass_matrix(fine_degree)
        get_geom_tensor = lambda cell: 1.0 / cell.Jac

    # Need matrix for integration of H10 norm
    else:
        Apoly_matrix = leg.stiffness_matrix(fine_degree)
        get_geom_tensor = lambda cell: cell.Jac

    A_fine = assemble_matrix(V_fine, Apoly_matrix, get_geom_tensor, timer=0)

    # Integrate the error
    e = sqrt(np.sum(e * A_fine.dot(e)))
    # Mesh size
    hmin = mesh.hmin()

    # Add the cond number
    kappa = np.linalg.cond(A.toarray())

    return hmin, e, kappa, A.shape[0]