def __init__(self, obs_noise, init_true_state, init_belief): """init_belief is a Distribution.""" agent = pomdp_py.Agent(init_belief, PolicyModel(), TransitionModel(), ObservationModel(obs_noise), RewardModel()) env = pomdp_py.Environment(init_true_state, TransitionModel(), RewardModel()) super().__init__(agent, env, name="TigerProblem")
def __init__(self, init_state, init_belief): """init_belief is a Distribution.""" agent = pomdp_py.Agent(init_belief, LUPolicyModel(), LUTransitionModel(), LUObservationModel(), LURewardModel()) env = pomdp_py.Environment(init_state, LUTransitionModel(), LURewardModel()) super().__init__(agent, env, name="LoadUnloadProblem")
def __init__(self, n, k, init_state, rock_locs, init_belief): self._n, self._k = n, k agent = pomdp_py.Agent( init_belief, RSPolicyModel(n, k), RSTransitionModel(n, rock_locs, self.in_exit_area), RSObservationModel(rock_locs), RSRewardModel(rock_locs, self.in_exit_area)) env = pomdp_py.Environment( init_state, RSTransitionModel(n, rock_locs, self.in_exit_area), RSRewardModel(rock_locs, self.in_exit_area)) self._rock_locs = rock_locs super().__init__(agent, env, name="RockSampleProblem")