Example #1
0
    def __init__(self):
        Pollution = DiscreteDistribution({'F': 0.9, 'T': 0.1})
        Smoker = DiscreteDistribution({'T': 0.3, 'F': 0.7})
        print(Smoker)
        Cancer = ConditionalProbabilityTable([
            ['T', 'T', 'T', 0.05],
            ['T', 'T', 'F', 0.95],
            ['T', 'F', 'T', 0.02],
            ['T', 'F', 'F', 0.98],
            ['F', 'T', 'T', 0.03],
            ['F', 'T', 'F', 0.97],
            ['F', 'F', 'T', 0.001],
            ['F', 'F', 'F', 0.999],
        ], [Pollution, Smoker])
        print(Cancer)
        XRay = ConditionalProbabilityTable([
            ['T', 'T', 0.9],
            ['T', 'F', 0.1],
            ['F', 'T', 0.2],
            ['F', 'F', 0.8],
        ], [Cancer])
        Dyspnoea = ConditionalProbabilityTable([
            ['T', 'T', 0.65],
            ['T', 'F', 0.35],
            ['F', 'T', 0.3],
            ['F', 'F', 0.7],
        ], [Cancer])
        s1 = Node(Pollution, name="Pollution")
        s2 = Node(Smoker, name="Smoker")
        s3 = Node(Cancer, name="Cancer")
        s4 = Node(XRay, name="XRay")
        s5 = Node(Dyspnoea, name="Dyspnoea")

        model = BayesianNetwork("Lung Cancer")
        model.add_states(s1, s2, s3, s4, s5)
        model.add_edge(s1, s3)
        model.add_edge(s2, s3)
        model.add_edge(s3, s4)
        model.add_edge(s3, s5)
        model.bake()
        self.model = model

        meta = []
        name_mapper = ["Pollution", "Smoker", "Cancer", "XRay", "Dyspnoea"]
        for i in range(self.model.node_count()):
            meta.append({
                "name": name_mapper[i],
                "type": "categorical",
                "size": 2,
                "i2s": ['T', 'F']
            })
        self.meta = meta
Example #2
0
    def __init__(self):
        A = DiscreteDistribution({'1': 1. / 3, '2': 1. / 3, '3': 1. / 3})
        B = ConditionalProbabilityTable([
            ['1', '1', 0.5],
            ['1', '2', 0.5],
            ['1', '3', 0],
            ['2', '1', 0],
            ['2', '2', 0.5],
            ['2', '3', 0.5],
            ['3', '1', 0.5],
            ['3', '2', 0],
            ['3', '3', 0.5],
        ], [A])
        C = ConditionalProbabilityTable([
            ['1', '4', 0.5],
            ['1', '5', 0.5],
            ['1', '6', 0],
            ['2', '4', 0],
            ['2', '5', 0.5],
            ['2', '6', 0.5],
            ['3', '4', 0.5],
            ['3', '5', 0],
            ['3', '6', 0.5],
        ], [A])

        s1 = Node(A, name="A")
        s2 = Node(B, name="B")
        s3 = Node(C, name="C")

        model = BayesianNetwork("tree")
        model.add_states(s1, s2, s3)
        model.add_edge(s1, s2)
        model.add_edge(s1, s3)
        model.bake()
        self.model = model

        meta = []
        for i in range(self.model.node_count() - 1):
            meta.append({
                "name": chr(ord('A') + i),
                "type": "categorical",
                "size": 3,
                "i2s": ['1', '2', '3']
            })
        meta.append({
            "name": "C",
            "type": "categorical",
            "size": 3,
            "i2s": ['4', '5', '6']
        })
        self.meta = meta
Example #3
0
    def __init__(self):
        Rain = DiscreteDistribution({'T': 0.2, 'F': 0.8})
        Sprinkler = ConditionalProbabilityTable([
            ['F', 'T', 0.4],
            ['F', 'F', 0.6],
            ['T', 'T', 0.1],
            ['T', 'F', 0.9],
        ], [Rain])
        Wet = ConditionalProbabilityTable([
            ['F', 'F', 'T', 0.01],
            ['F', 'F', 'F', 0.99],
            ['F', 'T', 'T', 0.8],
            ['F', 'T', 'F', 0.2],
            ['T', 'F', 'T', 0.9],
            ['T', 'F', 'F', 0.1],
            ['T', 'T', 'T', 0.99],
            ['T', 'T', 'F', 0.01],
        ], [Sprinkler, Rain])

        s1 = Node(Rain, name="Rain")
        s2 = Node(Sprinkler, name="Sprinkler")
        s3 = Node(Wet, name="Wet")

        model = BayesianNetwork("Simple fully connected")
        model.add_states(s1, s2, s3)
        model.add_edge(s1, s2)
        model.add_edge(s1, s3)
        model.add_edge(s2, s3)
        model.bake()
        self.model = model

        meta = []
        for i in range(self.model.node_count()):
            meta.append({
                "name": None,
                "type": "categorical",
                "size": 2,
                "i2s": ['T', 'F']
            })
        meta[0]['name'] = 'Rain'
        meta[1]['name'] = 'Sprinkler'
        meta[2]['name'] = 'Wet'
        self.meta = meta
Example #4
0
 def __get_symptom_distributions_and_states(self, known_symptoms: List):
     symptom_distributions = list()
     symptom_states = list()
     for (
             symptom,
             probability,
             not_symptom,
             not_probability,
     ) in known_symptoms:
         symptom_distribution = DiscreteDistribution({
             "1":
             float(probability),
             "0":
             float(not_probability)
         })
         symptom_distributions.append(symptom_distribution)
         symptom_states.append((Node(symptom_distribution, name=symptom)))
     return symptom_distributions, symptom_states
Example #5
0
def test_io_fit():
    d1 = DiscreteDistribution({True: 0.6, False: 0.4})
    d2 = ConditionalProbabilityTable([
        [True, 'A', 0.2],
        [True, 'B', 0.8],
        [False, 'A', 0.3],
        [False, 'B', 0.7]], [d1])
    d3 = ConditionalProbabilityTable([
        ['A', 0, 0.3],
        ['A', 1, 0.7],
        ['B', 0, 0.8],
        ['B', 1, 0.2]], [d2])

    n1 = Node(d1)
    n2 = Node(d2)
    n3 = Node(d3)

    model1 = BayesianNetwork()
    model1.add_nodes(n1, n2, n3)
    model1.add_edge(n1, n2)
    model1.add_edge(n2, n3)
    model1.bake()
    model1.fit(X, weights=weights)

    d1 = DiscreteDistribution({True: 0.2, False: 0.8})
    d2 = ConditionalProbabilityTable([
        [True, 'A', 0.7],
        [True, 'B', 0.2],
        [False, 'A', 0.4],
        [False, 'B', 0.6]], [d1])
    d3 = ConditionalProbabilityTable([
        ['A', 0, 0.9],
        ['A', 1, 0.1],
        ['B', 0, 0.0],
        ['B', 1, 1.0]], [d2])

    n1 = Node(d1)
    n2 = Node(d2)
    n3 = Node(d3)

    model2 = BayesianNetwork()
    model2.add_nodes(n1, n2, n3)
    model2.add_edge(n1, n2)
    model2.add_edge(n2, n3)
    model2.bake()
    model2.fit(data_generator)

    logp1 = model1.log_probability(X)
    logp2 = model2.log_probability(X)

    assert_array_almost_equal(logp1, logp2)
Example #6
0
 def __get_bayesian_network_model(
     self,
     symptom_distributions: List,
     symptom_states: List,
     file_name: str,
     disease_name: str,
 ):
     disease_conditional_distribution = list()
     for (s1, s2, s3, s4, s5, d, p) in get_from_csv(file_name):
         disease_conditional_distribution.append(
             [s1, s2, s3, s4, s5, d, float(p)])
     disease_distribution = ConditionalProbabilityTable(
         disease_conditional_distribution,
         symptom_distributions,
     )
     disease = Node(disease_distribution, name=disease_name)
     model = BayesianNetwork(disease_name)
     model.add_state(disease)
     for symptom_state in symptom_states:
         model.add_state(symptom_state)
         model.add_edge(symptom_state, disease)
     model.bake()
     return model
from pomegranate import DiscreteDistribution
from pomegranate import ConditionalProbabilityTable
from pomegranate import BayesianNetwork
from pomegranate import Node

guest = DiscreteDistribution({'A': 1. / 3, 'B': 1. / 3, 'C': 1. / 3})
prize = DiscreteDistribution({'A': 1. / 3, 'B': 1. / 3, 'C': 1. / 3})
monty = ConditionalProbabilityTable(
    [['A', 'A', 'A', 0.0], ['A', 'A', 'B', 0.5], ['A', 'A', 'C', 0.5],
     ['A', 'B', 'A', 0.0], ['A', 'B', 'B', 0.0], ['A', 'B', 'C', 1.0],
     ['A', 'C', 'A', 0.0], ['A', 'C', 'B', 1.0], ['A', 'C', 'C', 0.0],
     ['B', 'A', 'A', 0.0], ['B', 'A', 'B', 0.0], ['B', 'A', 'C', 1.0],
     ['B', 'B', 'A', 0.5], ['B', 'B', 'B', 0.0], ['B', 'B', 'C', 0.5],
     ['B', 'C', 'A', 1.0], ['B', 'C', 'B', 0.0], ['B', 'C', 'C', 0.0],
     ['C', 'A', 'A', 0.0], ['C', 'A', 'B', 1.0], ['C', 'A', 'C', 0.0],
     ['C', 'B', 'A', 1.0], ['C', 'B', 'B', 0.0], ['C', 'B', 'C', 0.0],
     ['C', 'C', 'A', 0.5], ['C', 'C', 'B', 0.5], ['C', 'C', 'C', 0.0]],
    [guest, prize])

s1 = Node(guest, name="guest")
s2 = Node(prize, name="prize")
s3 = Node(monty, name="monty")

model = BayesianNetwork("Monty Hall Problem")
model.add_states(s1, s2, s3)
model.add_edge(s1, s3)
model.add_edge(s2, s3)
model.bake()
Example #8
0
    def __init__(self, filename):
        with open(filename) as f:
            bif = f.read()
        vars = re.findall(r"variable[^\{]+{[^\}]+}", bif)
        probs = re.findall(r"probability[^\{]+{[^\}]+}", bif)

        var_nodes = {}
        var_index_to_name = []
        edges = []

        self.meta = []
        todo = set()
        for v, p in zip(vars, probs):
            m = re.search(r"variable\s+([^\{\s]+)\s+", v)
            v_name = m.group(1)
            m = re.search(r"type\s+discrete\s+\[\s*(\d+)\s*\]\s*\{([^\}]+)\}",
                          v)
            v_opts_n = int(m.group(1))
            v_opts = m.group(2).replace(',', ' ').split()

            assert v_opts_n == len(v_opts)
            # print(v_name, v_opts_n, v_opts)

            m = re.search(r"probability\s*\(([^)]+)\)", p)
            cond = m.group(1).replace('|', ' ').replace(',', ' ').split()
            assert cond[0] == v_name
            # print(cond)

            self.meta.append({
                "name": v_name,
                "type": "categorical",
                "size": v_opts_n,
                "i2s": v_opts
            })
            if len(cond) == 1:
                m = re.search(r"table([e\-\d\.\s,]*);", p)
                margin_p = m.group(1).replace(',', ' ').split()
                margin_p = [float(x) for x in margin_p]
                assert abs(sum(margin_p) - 1) < 1e-6
                assert len(margin_p) == v_opts_n
                margin_p = dict(zip(v_opts, margin_p))

                var_index_to_name.append(v_name)
                tmp = DiscreteDistribution(margin_p)
                # print(tmp)
                var_nodes[v_name] = tmp
            else:
                m_iter = re.finditer(r"\(([^)]*)\)([\s\d\.,\-e]+);", p)
                cond_p_table = []
                for m in m_iter:
                    cond_values = m.group(1).replace(',', ' ').split()
                    cond_p = m.group(2).replace(',', ' ').split()
                    cond_p = [float(x) for x in cond_p]
                    assert len(cond_values) == len(cond) - 1
                    assert len(cond_p) == v_opts_n
                    assert abs(sum(cond_p) - 1) < 1e-6

                    for opt, opt_p in zip(v_opts, cond_p):
                        cond_p_table.append(cond_values + [opt, opt_p])
                var_index_to_name.append(v_name)

                tmp = (cond_p_table, cond)
                # print(tmp)
                var_nodes[v_name] = tmp
                for x in cond[1:]:
                    edges.append((x, v_name))
                todo.add(v_name)

        while len(todo) > 0:
            # print(todo)
            for v_name in todo:
                # print(v_name, type(var_nodes[v_name]))
                cond_p_table, cond = var_nodes[v_name]
                flag = True
                for y in cond[1:]:
                    if y in todo:
                        flag = False
                        break
                if flag:
                    cond_t = [var_nodes[x] for x in cond[1:]]
                    var_nodes[v_name] = ConditionalProbabilityTable(
                        cond_p_table, cond_t)
                    todo.remove(v_name)
                    break

        for x in var_index_to_name:
            var_nodes[x] = Node(var_nodes[x], name=x)

        var_nodes_list = [var_nodes[x] for x in var_index_to_name]
        # print(var_nodes_list)
        model = BayesianNetwork("tmp")
        model.add_states(*var_nodes_list)

        for edge in edges:
            model.add_edge(var_nodes[edge[0]], var_nodes[edge[1]])
        model.bake()
        # print(model.to_json())
        self.model = model
lung_cancer = ConditionalProbabilityTable(
    buildCpt("Lung_cancer", ["Smoking", "Genetics"]), [smoking, genetics])
yellow_fingers = ConditionalProbabilityTable(
    buildCpt("Yellow_Fingers", ["Smoking"]), [smoking])
attention_disorder = ConditionalProbabilityTable(
    buildCpt("Attention_Disorder", ["Genetics"]), [genetics])
coughing = ConditionalProbabilityTable(
    buildCpt("Coughing", ["Allergy", "Lung_cancer"]), [allergy, lung_cancer])
fatigue = ConditionalProbabilityTable(
    buildCpt("Fatigue", ["Lung_cancer", "Coughing"]), [lung_cancer, coughing])
car_accident = ConditionalProbabilityTable(
    buildCpt("Car_Accident", ["Fatigue", "Attention_Disorder"]),
    [fatigue, attention_disorder],
)

sAnxiety = Node(anxiety, name="Anxiety")
sPeerPressure = Node(peer_pressure, name="Peer_Pressure")
sSmoking = Node(smoking, name="Smoking")
sGenetics = Node(genetics, name="Genetics")
sLungCancer = Node(lung_cancer, name="Lung_cancer")
sYellowFingers = Node(yellow_fingers, name="Yellow_Fingers")
sAttentionDisorder = Node(attention_disorder, name="Attention_Disorder")
sCoughing = Node(coughing, name="Coughing")
sFatigue = Node(fatigue, name="Fatigue")
sCarAccident = Node(car_accident, name="Car_Accident")
sAllergy = Node(allergy, name="Allergy")

model = BayesianNetwork("Smoking Risk")
model.add_nodes(
    sAnxiety,
    sPeerPressure,
Example #10
0
from pomegranate import DiscreteDistribution
from pomegranate import ConditionalProbabilityTable
from pomegranate import BayesianNetwork
from pomegranate import Node

# Rain node has no parents
rain = Node(DiscreteDistribution({
    "none": 0.7,
    "light": 0.2,
    "heavy": 0.1
}),
            name="rain")

# Track maintenance node is coditional on rain
maintenance = Node(ConditionalProbabilityTable(
    [["none", "yes", 0.4], ["none", "no", 0.6], ["light", "yes", 0.2],
     ["light", "no", 0.8], ["heavy", "yes", 0.1], ["heavy", "no", 0.9]],
    [rain.distribution]),
                   name="maintenance")

# Train Node is conditional on rain, and maintenance
train = Node(ConditionalProbabilityTable([
    ["none", "yes", "on time", 0.8],
    ["none", "yes", "delayed", 0.2],
    ["none", "no", "on time", 0.9],
    ["none", "no", "delayed", 0.1],
    ["light", "yes", "on time", 0.6],
    ["light", "yes", "delayed", 0.4],
    ["light", "no", "on time", 0.7],
    ["light", "no", "delayed", 0.3],
    ["heavy", "yes", "on time", 0.4],