def getErr(i=96, s=0.01): sim = Simulation.Simulation.load( s=s, nu0=0.005, experimentID=i, ModelName="TimeSeries", numReplicates=10, step=10, startGeneration=0, maxGeneration=50, ) bot = pd.read_pickle(home + "out/BottleneckedNeutrals.NotNormalized.df")[i].loc[[0, 10, 20, 30, 40, 50]] td = Estimate.Estimate.getEstimate(sim.X, n=200, method="tajimaD", removeFixedSites=True, normalizeTajimaD=False) td.index = sim.getTrueGenerationTimes() ctd = td.apply(lambda x: ((x - bot).diff().iloc[1:])) ctd[leaveOneOut(ctd)] = None ctd = ctd.apply(regularize) t = sim.getTrueGenerationTimes() nu = sig(s * t / 2 + logit(0.1)) a = Estimate.Estimate.getEstimate(sim.X0, n=200, method="pi") b = -Estimate.Estimate.getEstimate(sim.X0, n=200, method="watterson") / (1.0 / np.arange(1, 201)).sum() f = pd.Series(b * np.log(1 - nu) - a * nu ** 2, index=t).diff().iloc[1:] # ctd.mean(1).plot(color='b',legend=False);f.plot(linewidth=3,color='k'); # ctds.mean(1).plot(ax=plt.gca(),color='r',legend=False); return ((ctd.mean(1).sum() - f.mean())) / neurtrality(i, s)
def fit(self,y=None,pos=1,verbose=0): timesIDX=y.abs().sum(1)!=0 self.y= y[timesIDX] self.times= self.Times[np.where(timesIDX.values)[0]] obj0=self.getZeroObj() if self.initSviaLineSearch: self.setInitYslackViaLineSearch() self.setInitSviaLineSearch() self.reset() start_time=time.time() for i in range(self.maxIter): obj=self.Objective_(self.y,self.lr_s, self.lr_nu, self.lr_theta, self.times, (self.final_momentum , self.initial_momentum)[i<5],self.n, self.theta) if verbose>1: print obj ,self.S__.get_value(), self.Yslack__.get_value(),sig(self.c__.get_value()) if verbose: print obj ,self.S__.get_value(), self.Yslack__.get_value(),sig(self.c__.get_value()) negLogLikelihoodRatio=np.log(obj0)-np.log(self.Loss_(self.y,self.Feedforward_(self.times,self.n,self.theta))) s=np.asscalar(self.S__.get_value()) if s<1e-6: negLogLikelihoodRatio=0 s=0 self.sol=pd.Series({'s':s,'LR':negLogLikelihoodRatio,'Time':time.time()-start_time,'pos':pos,'nu0':sig(self.c__.get_value()),'slack':np.asscalar(self.Yslack__.get_value()),'obj':float(obj), 'obj0':float(obj0), 'times': self.times, 'y':self.y, 'theta':self.theta, 'n':self.n, 'smoothTimes': np.tile(np.arange(self.times[0][0] , self.times[-1][0]+1),(self.sim.numReplicates,1)).T}) return self.sol
def load2(iii=96, s=0.01): sim = Simulation.Simulation.load( s=s, nu0=0.005, experimentID=iii, ModelName="TimeSeries", numReplicates=10, step=10, startGeneration=0, maxGeneration=50, ) simn = Simulation.Simulation.load( s=0, nu0=0.005, experimentID=iii, ModelName="TimeSeries", numReplicates=10, step=10, startGeneration=0, maxGeneration=50, ) bot = pd.read_pickle(home + "out/BottleneckedNeutrals.NotNormalized.df")[iii].loc[[0, 10, 20, 30, 40, 50]] td = Estimate.Estimate.getEstimate( sim.X, n=200, method="tajimaD", removeFixedSites=True, normalizeTajimaD=False ).mean(1) td.index = sim.getTrueGenerationTimes() tdn = Estimate.Estimate.getEstimate( simn.X, n=200, method="tajimaD", removeFixedSites=True, normalizeTajimaD=False ).mean(1) tdn.index = simn.getTrueGenerationTimes() ctd = [td - bot, regularize2(td - bot), regularize3(td - bot)] ctdn = [tdn - bot, regularize2(tdn - bot), regularize3(tdn - bot)] t = sim.getTrueGenerationTimes() nu = sig(s * t / 2 + logit(0.005)) a = Estimate.Estimate.getEstimate(sim.X0, n=200, method="pi") b = -Estimate.Estimate.getEstimate(sim.X0, n=200, method="watterson") / (1.0 / np.arange(1, 201)).sum() D0 = Estimate.Estimate.getEstimate(sim.X0, n=200, method="tajimaD", normalizeTajimaD=False) Dt = pd.Series(b * np.log(1 - nu) - a * nu ** 2, index=t) return map(lambda x: x, ctd), map(lambda x: x, ctdn), Dt
def fit(self,winidx,windowIndex=None,filterAfterDrop=True,linesearchTheta=False,YslackLineSearch=False): if windowIndex is None: y=self.sim.getAverageHAF(self.sim.winIdx[winidx]) else: y=self.sim.getAverageHAF(windowIndex) self.times= self.Times if filterAfterDrop: self.lastGenerationIndex = self.sim.filterTimeSamplesWithHighNegDer(y) else: self.lastGenerationIndex=(np.ones(self.numReplicates)*self.times.shape[0]).astype(int)-1 self.y=y.values self.reset() if YslackLineSearch: self.setInitYslackViaSettingInitObservation() self.setInitSviaLineSearch() start_time=time.time() if self.verbose>2: print 'y:\n{},times:\n{}\nn:{},\ttheta:{}\tlastGenIDX:{}\tRepIDX:{}'.format(self.y,self.times,self.n,self.Theta__.get_value(),self.lastGenerationIndex,self.replicateIndex) self.obj=float(self.Loss_(self.y,self.times,self.n,self.lastGenerationIndex,self.replicateIndex)) if self.verbose>1: print 'Before\nIter,\tobj,\ts,\ttheta,\tYslack,\tnu\n','{}\t{:.3f}\t{:.3f}\t{:.3f}\t{:.3f}\t{}'.format(0,self.obj ,float(self.S__.get_value()),float(self.Theta__.get_value()) ,float(self.Yslack__.get_value()),sig(self.c__.get_value())) for i in range(self.maxIter): self.saveState() self.obj=self.Objective_(self.y, self.lr_s, self.lr_nu, self.lr_Yslack, self.lr_theta, self.times, (self.final_momentum , self.initial_momentum)[i<5],self.n, self.lastGenerationIndex,self.replicateIndex) if self.verbose>1: print '{}\t{:.3f}\t{:.3f}\t{:.3f}\t{:.3f}\t{}'.format(i+1,float(self.obj) ,float(self.S__.get_value()),float(self.Theta__.get_value()) ,float(self.Yslack__.get_value()),sig(self.c__.get_value())) if self.obj>self.obj__prev: self.undoStep() break s, nu0, slack,theta= np.asscalar(self.S__.get_value()), sig(self.c__.get_value()),np.asscalar(self.Yslack__.get_value()),np.asscalar(self.Theta__.get_value()) obj=self.Loss_(self.y,self.times,self.n,self.lastGenerationIndex,self.replicateIndex) obj0=self.getZeroObj() negLogLikelihoodRatio=np.log(obj0)-np.log(obj) if s<0: negLogLikelihoodRatio=0 s=0 # if negLogLikelihoodRatio<0: negLogLikelihoodRatio=0 self.sol=pd.Series({'s':s,'LR':negLogLikelihoodRatio,'Time':time.time()-start_time,'pos':self.sim.winMidPos[winidx],'nu0':nu0,'slack':slack,'obj':float(obj), 'obj0':float(obj0), 'lastTimes': self.lastGenerationIndex, 'y':self.y, 'theta':theta, 'n':self.n, 'winidx':winidx, 'SLR': np.exp(negLogLikelihoodRatio)*s, 'watterson':Estimate.watterson(self.sim.H0.iloc[:,self.sim.winIdx[winidx]]),'method':'HAF'}) return self.sol