Example #1
0
    def test_upwind_example_1(self, if_export=False):
        #######################
        # Simple 2d upwind problem with explicit Euler scheme in time
        #######################
        T = 1
        Nx, Ny = 4, 1
        g = pp.CartGrid([Nx, Ny], [1, 1])
        g.compute_geometry()

        advect = pp.Upwind("transport")
        dis = advect.darcy_flux(g, [1, 0, 0])

        b_faces = g.get_all_boundary_faces()
        bc = pp.BoundaryCondition(g, b_faces, ["dir"] * b_faces.size)
        bc_val = np.hstack(([1], np.zeros(g.num_faces - 1)))
        specified_parameters = {
            "bc": bc,
            "bc_values": bc_val,
            "darcy_flux": dis
        }
        data = pp.initialize_default_data(g, {}, "transport",
                                          specified_parameters)
        time_step = advect.cfl(g, data)
        data[pp.PARAMETERS]["transport"]["time_step"] = time_step

        advect.discretize(g, data)

        U, rhs = advect.assemble_matrix_rhs(g, data)
        rhs = time_step * rhs
        U = time_step * U
        OF = advect.outflow(g, data)
        mass = pp.MassMatrix("transport")
        mass.discretize(g, data)
        M, _ = mass.assemble_matrix_rhs(g, data)

        conc = np.zeros(g.num_cells)

        M_minus_U = M - U
        inv_mass = pp.InvMassMatrix("transport")
        inv_mass.discretize(g, data)
        invM, _ = inv_mass.assemble_matrix_rhs(g, data)

        # Loop over the time
        Nt = int(T / time_step)
        time = np.empty(Nt)
        production = np.zeros(Nt)
        for i in np.arange(Nt):

            # Update the solution
            production[i] = np.sum(OF.dot(conc))
            conc = invM.dot((M_minus_U).dot(conc) + rhs)
            time[i] = time_step * i

        known = 1.09375
        assert np.sum(production) == known
Example #2
0
    def test_inv_mass_matrix(self):
        g = pp.CartGrid([3, 3, 3])
        g.compute_geometry()
        phi = np.random.rand(g.num_cells)
        dt = 0.2
        specified_parameters = {"time_step": dt, "mass_weight": phi}
        data = pp.initialize_default_data(g, {}, "flow", specified_parameters)

        time_discr = pp.InvMassMatrix()
        time_discr.discretize(g, data)
        lhs, rhs = time_discr.assemble_matrix_rhs(g, data)

        self.assertTrue(np.allclose(rhs, 0))
        self.assertTrue(np.allclose(lhs.diagonal(),
                                    1 / (g.cell_volumes * phi)))
        off_diag = np.where(~np.eye(lhs.shape[0], dtype=bool))
        self.assertTrue(np.allclose(lhs.A[off_diag], 0))
Example #3
0
    def test_upwind_example_3(self, if_export=False):
        #######################
        # Simple 2d upwind problem with explicit Euler scheme in time coupled with
        # a Darcy problem
        #######################
        T = 2
        Nx, Ny = 10, 10

        def funp_ex(pt):
            return -np.sin(pt[0]) * np.sin(pt[1]) - pt[0]

        g = pp.CartGrid([Nx, Ny], [1, 1])
        g.compute_geometry()

        # Permeability
        perm = pp.SecondOrderTensor(kxx=np.ones(g.num_cells))

        # Boundaries
        b_faces = g.get_all_boundary_faces()
        bc = pp.BoundaryCondition(g, b_faces, ["dir"] * b_faces.size)
        bc_val = np.zeros(g.num_faces)
        bc_val[b_faces] = funp_ex(g.face_centers[:, b_faces])
        specified_parameters = {
            "bc": bc,
            "bc_values": bc_val,
            "second_order_tensor": perm,
        }
        data = pp.initialize_default_data(g, {}, "flow", specified_parameters)
        solver = pp.MVEM("flow")
        solver.discretize(g, data)
        D_flow, b_flow = solver.assemble_matrix_rhs(g, data)

        solver_source = pp.DualScalarSource("flow")
        solver_source.discretize(g, data)
        D_source, b_source = solver_source.assemble_matrix_rhs(g, data)

        up = sps.linalg.spsolve(D_flow + D_source, b_flow + b_source)
        _, u = solver.extract_pressure(g, up, data), solver.extract_flux(g, up, data)

        # Darcy_Flux
        dis = u

        # Boundaries
        bc = pp.BoundaryCondition(g, b_faces, ["dir"] * b_faces.size)
        bc_val = np.hstack(([1], np.zeros(g.num_faces - 1)))
        specified_parameters = {"bc": bc, "bc_values": bc_val, "darcy_flux": dis}
        data = pp.initialize_default_data(g, {}, "transport", specified_parameters)

        # Advect solver
        advect = pp.Upwind("transport")
        advect.discretize(g, data)

        U, rhs = advect.assemble_matrix_rhs(g, data)
        time_step = advect.cfl(g, data)
        rhs = time_step * rhs
        U = time_step * U

        data[pp.PARAMETERS]["transport"]["time_step"] = time_step
        mass = pp.MassMatrix("transport")
        mass.discretize(g, data)
        M, _ = mass.assemble_matrix_rhs(g, data)

        conc = np.zeros(g.num_cells)
        M_minus_U = M - U
        inv_mass = pp.InvMassMatrix("transport")
        inv_mass.discretize(g, data)
        invM, _ = inv_mass.assemble_matrix_rhs(g, data)

        # Loop over the time
        Nt = int(T / time_step)
        time = np.empty(Nt)
        for i in np.arange(Nt):

            # Update the solution
            conc = invM.dot((M_minus_U).dot(conc) + rhs)
            time[i] = time_step * i

        known = np.array(
            [
                9.63168200e-01,
                8.64054875e-01,
                7.25390695e-01,
                5.72228235e-01,
                4.25640080e-01,
                2.99387331e-01,
                1.99574336e-01,
                1.26276876e-01,
                7.59011550e-02,
                4.33431230e-02,
                3.30416807e-02,
                1.13058617e-01,
                2.05372538e-01,
                2.78382057e-01,
                3.14035373e-01,
                3.09920132e-01,
                2.75024694e-01,
                2.23163145e-01,
                1.67386939e-01,
                1.16897527e-01,
                1.06111312e-03,
                1.11951850e-02,
                3.87907727e-02,
                8.38516119e-02,
                1.36617802e-01,
                1.82773271e-01,
                2.10446545e-01,
                2.14651936e-01,
                1.97681518e-01,
                1.66549151e-01,
                3.20751341e-05,
                9.85780113e-04,
                6.07062715e-03,
                1.99393042e-02,
                4.53237556e-02,
                8.00799828e-02,
                1.17199623e-01,
                1.47761481e-01,
                1.64729339e-01,
                1.65390555e-01,
                9.18585872e-07,
                8.08267622e-05,
                8.47227168e-04,
                4.08879583e-03,
                1.26336029e-02,
                2.88705048e-02,
                5.27841497e-02,
                8.10459333e-02,
                1.07956484e-01,
                1.27665318e-01,
                2.51295298e-08,
                6.29844122e-06,
                1.09361990e-04,
                7.56743783e-04,
                3.11384414e-03,
                9.04446601e-03,
                2.03443897e-02,
                3.75208816e-02,
                5.89595194e-02,
                8.11457277e-02,
                6.63498510e-10,
                4.73075468e-07,
                1.33728945e-05,
                1.30243418e-04,
                7.01905707e-04,
                2.55272292e-03,
                6.96686157e-03,
                1.52290448e-02,
                2.78607282e-02,
                4.40402650e-02,
                1.71197497e-11,
                3.47118057e-08,
                1.57974045e-06,
                2.13489614e-05,
                1.48634295e-04,
                6.68104990e-04,
                2.18444135e-03,
                5.58646819e-03,
                1.17334966e-02,
                2.09744728e-02,
                4.37822313e-13,
                2.52373622e-09,
                1.83589660e-07,
                3.40553325e-06,
                3.02948532e-05,
                1.66504215e-04,
                6.45119867e-04,
                1.90731440e-03,
                4.53436628e-03,
                8.99977737e-03,
                1.12627412e-14,
                1.84486857e-10,
                2.13562387e-08,
                5.39492977e-07,
                6.08223906e-06,
                4.05535296e-05,
                1.84731221e-04,
                6.25871542e-04,
                1.66459389e-03,
                3.59980231e-03,
            ]
        )

        assert np.allclose(conc, known)