def test02():
    print("Test 02")

    # methods parametes
    portfolioModelData1: List[tuple] = [['metoda1', 100], ['metoda2', 80],
                                        ['metoda3', 60]]
    portfolioModel1: DataFrame = pd.DataFrame(portfolioModelData1,
                                              columns=["methodID", "votes"])
    portfolioModel1.set_index("methodID", inplace=True)
    portfolioModel1.__class__ = PModelDHondt

    #portfolioModel1.linearNormalizing()

    portfolioModelData2: List[tuple] = [['metoda2', 20], ['metoda3', 40],
                                        ['metoda1', 0]]
    portfolioModel2: DataFrame = pd.DataFrame(portfolioModelData2,
                                              columns=["methodID", "votes"])
    portfolioModel2.set_index("methodID", inplace=True)
    portfolioModel2.__class__ = PModelDHondt

    #print(portfolioModel1.head())
    #print(portfolioModel2.head())

    rModel = PModelDHondt.sumModels(portfolioModel1, portfolioModel2)
    print(rModel)
    print()

    PModelDHondt.linearNormalizingPortfolioModelDHondt(rModel)
    print(rModel)
Example #2
0
    def getModel(self, userID:int, argsDict:dict):

        status:float = argsDict[ASequentialSimulation.ARG_STATUS]
        print("status: " + str(status))

        mGlobal:DataFrame = self.getModelGlobal()

        if self.modeSkip:
            print("aaaaaaaaaaaaaaaaa")
            numberOfClick:int = self.getModelPersonAllUsers().getNumberOfClick(userID)
            print("numberOfClick: " + str(numberOfClick))
            if numberOfClick < self.skipClickThreshold:
                return mGlobal

        mGlobal.linearNormalizing()
        #print("GLOBAL:")
        #print(mGlobal.head(10))
        mGlobal = PModelDHondt.multiplyModel(mGlobal, 1.0 - status)

        mPerson:DataFrame = self.getModelPerson(userID)
        mPerson.linearNormalizing()
        mPerson = PModelDHondt.multiplyModel(mPerson, status)

        rPModel:DataFrame = PModelDHondt.sumModels(mGlobal, mPerson)
        rPModel.linearNormalizing()

        #print("VYSLEDNY:")
        #print(rPModel.head(10))

        return rPModel
Example #3
0
def getContextFuzzyDHondtDirectOptimizeINF():
  # taskID:str = "Web" + "ContextFuzzyDHondtDirectOptimizeINF" + "Roulette1"
  taskID:str = "Web" + "ContextFuzzyDHondtDirectOptimizeINF" + "Fixed"
  dataset:ADataset = DatasetST.readDatasets()

  # selector:ADHondtSelector = RouletteWheelSelector({RouletteWheelSelector.ARG_EXPONENT: 1})
  selector:ADHondtSelector = TheMostVotedItemSelector({})

  pToolOLin0802HLin1002:APenalization = PenalizationToolDefinition.exportProbPenaltyToolOLin0802HLin1002(
    InputSimulatorDefinition.numberOfAggrItems)

  rIDs, rDescs = InputRecomSTDefinition.exportPairOfRecomIdsAndRecomDescrs()

  history:AHistory = HistoryHierDF(taskID)

  # Init eTool
  evalTool:AEvalTool = EvalToolContext({
    EvalToolContext.ARG_ITEMS: dataset.serialsDF,  # ITEMS
    EvalToolContext.ARG_EVENTS: dataset.eventsDF,  # EVENTS (FOR CALCULATING HISTORY OF USER)
    EvalToolContext.ARG_DATASET: "st",  # WHAT DATASET ARE WE IN
    EvalToolContext.ARG_HISTORY: history})  # empty instance of AHistory is OK for ST dataset

  aDescDHont:AggregationDescription = InputAggrDefinition.exportADescDContextHondtDirectOptimizeINF(selector, pToolOLin0802HLin1002, evalTool)

  pDescr:Portfolio1AggrDescription = Portfolio1AggrDescription(
    taskID, rIDs, rDescs, aDescDHont)

  port:APortfolio = pDescr.exportPortfolio(taskID, history)
  port.train(history, dataset)

  model:DataFrame = PModelDHondt(pDescr.getRecommendersIDs())

  return (taskID, port, model, evalTool, history)
Example #4
0
def getFuzzyDHontINF():

  #taskID:str = "Web" + "FuzzyDHondtINF" + "Roulette1"
  taskID:str = "Web" + "FuzzyDHondt" + "Fixed"
  dataset:ADataset = DatasetST.readDatasets()

  #selector:ADHondtSelector = RouletteWheelSelector({RouletteWheelSelector.ARG_EXPONENT: 1})
  selector:ADHondtSelector = TheMostVotedItemSelector({})

  pToolOLin0802HLin1002:APenalization = PenalizationToolDefinition.exportPenaltyToolOLin0802HLin1002(
    InputSimulatorDefinition.numberOfAggrItems)

  aDescDHont:AggregationDescription = InputAggrDefinition.exportADescDHondtINF(selector, pToolOLin0802HLin1002)

  rIDs, rDescs = InputRecomSTDefinition.exportPairOfRecomIdsAndRecomDescrs()

  pDescr:Portfolio1AggrDescription = Portfolio1AggrDescription(
    taskID, rIDs, rDescs, aDescDHont)

  history:AHistory = HistoryHierDF(taskID)

  port:APortfolio = pDescr.exportPortfolio(taskID, history)
  port.train(history, dataset)

  model:DataFrame = PModelDHondt(pDescr.getRecommendersIDs())

  evalTool:AEvalTool = EvalToolDHondt({EvalToolDHondt.ARG_LEARNING_RATE_CLICKS: 0.03,
                                        EvalToolDHondt.ARG_LEARNING_RATE_VIEWS: 0.03 / 500})

  return (taskID, port, model, evalTool, history)
    def run(self, batchID:str, jobID:str):

        divisionDatasetPercentualSize:int
        uBehaviour:str
        repetition:int
        divisionDatasetPercentualSize, uBehaviour, repetition = InputABatchDefinition().getBatchParameters(self.datasetID)[batchID]

        selector:ADHondtSelector = self.getParameters()[jobID]

        itemsDF:DataFrame = Items.readFromFileMl1m()
        usersDF:DataFrame = Users.readFromFileMl1m()

        historyDF:AHistory = HistoryHierDF("test01")

        eTool:AEvalTool = EvalToolContext({
            EvalToolContext.ARG_USERS: usersDF,
            EvalToolContext.ARG_ITEMS: itemsDF,
            EvalToolContext.ARG_DATASET: "ml",
            EvalToolContext.ARG_HISTORY: historyDF})

        rIDs, rDescs = InputRecomMLDefinition.exportPairOfRecomIdsAndRecomDescrs()

        aDescDHont:AggregationDescription = InputAggrDefinition.exportADescContextFuzzyDHondtDirectOptimize(selector, eTool)

        pDescr:Portfolio1AggrDescription = Portfolio1AggrDescription(
            self.getBatchName() + jobID, rIDs, rDescs, aDescDHont)

        model:DataFrame = PModelDHondt(pDescr.getRecommendersIDs())

        simulator:Simulator = InputSimulatorDefinition().exportSimulatorML1M(
                batchID, divisionDatasetPercentualSize, uBehaviour, repetition)
        simulator.simulate([pDescr], [model], [eTool], [HistoryHierDF(pDescr.getPortfolioID())])
    def run(self, batchID: str, jobID: str):

        divisionDatasetPercentualSize: int
        uBehaviour: str
        repetition: int
        divisionDatasetPercentualSize, uBehaviour, repetition = InputABatchDefinition(
        ).getBatchParameters(self.datasetID)[batchID]

        #eTool:AEvalTool
        selector, eTool = self.getParameters()[jobID]

        rIDs, rDescs = InputRecomSTDefinition.exportPairOfRecomIdsAndRecomDescrs(
        )

        aDescDHont: AggregationDescription = InputAggrDefinition.exportADescDHondt(
            selector)

        pDescr: Portfolio1AggrDescription = Portfolio1AggrDescription(
            self.getBatchName() + jobID, rIDs, rDescs, aDescDHont)

        model: DataFrame = PModelDHondt(pDescr.getRecommendersIDs())

        simulator: Simulator = InputSimulatorDefinition(
        ).exportSimulatorSlantour(batchID, divisionDatasetPercentualSize,
                                  uBehaviour, repetition)
        simulator.simulate([pDescr], [model], [eTool],
                           [HistoryHierDF(pDescr.getPortfolioID())])
Example #7
0
def test01():

    print("Simulation: ML FuzzyDHondt")

    jobID: str = "Roulette1"

    selector = RouletteWheelSelector({RouletteWheelSelector.ARG_EXPONENT: 1})

    rIDs, rDescs = InputRecomSTDefinition.exportPairOfRecomIdsAndRecomDescrs()

    pDescr: Portfolio1AggrDescription = Portfolio1AggrDescription(
        "FuzzyDHondt" + jobID, rIDs, rDescs,
        InputAggrDefinition.exportADescDHondt(selector))

    batchID: str = "ml1mDiv90Ulinear0109R1"
    dataset: DatasetML = DatasetML.readDatasets()
    behaviourFile: str = BehavioursML.getFile(BehavioursML.BHVR_LINEAR0109)
    behavioursDF: DataFrame = BehavioursML.readFromFileMl1m(behaviourFile)

    model: DataFrame = PModelDHondt(pDescr.getRecommendersIDs())

    lrClick: float = 0.03
    lrView: float = lrClick / 500
    eTool: AEvalTool = EvalToolDHondt({
        EvalToolDHondt.ARG_LEARNING_RATE_CLICKS:
        lrClick,
        EvalToolDHondt.ARG_LEARNING_RATE_VIEWS:
        lrView
    })

    # simulation of portfolio
    simulator: Simulator = Simulator(batchID, SimulationML, argsSimulationDict,
                                     dataset, behavioursDF)
    simulator.simulate([pDescr], [model], [eTool],
                       [HistoryHierDF(pDescr.getPortfolioID())])
    def run(self, batchID: str, jobID: str):

        divisionDatasetPercentualSize: int
        uBehaviour: str
        repetition: int
        divisionDatasetPercentualSize, uBehaviour, repetition = InputABatchDefinition(
        ).getBatchParameters(self.datasetID)[batchID]

        eTool: AEvalTool = EToolDoNothing({})

        rIDs, rDescs = InputRecomRRDefinition.exportPairOfRecomIdsAndRecomDescrs(
        )

        aDescWeightedFAI: AggregationDescription = InputAggrDefinition.exportADescFAI(
        )

        pDescr: Portfolio1AggrDescription = Portfolio1AggrDescription(
            "FAI" + jobID, rIDs, rDescs, aDescWeightedFAI)

        model: DataFrame = PModelDHondt(pDescr.getRecommendersIDs())

        simulator: Simulator = InputSimulatorDefinition(
        ).exportSimulatorRetailRocket(batchID, divisionDatasetPercentualSize,
                                      uBehaviour, repetition)
        simulator.simulate([pDescr], [model], [eTool],
                           [HistoryHierDF(pDescr.getPortfolioID())])
    def run(self, batchID: str, jobID: str):
        divisionDatasetPercentualSize: int
        uBehaviour: str
        repetition: int
        divisionDatasetPercentualSize, uBehaviour, repetition = \
            InputABatchDefinition().getBatchParameters(self.datasetID)[batchID]

        # eTool:AEvalTool
        selector, eTool = self.getParameters()[jobID]

        rIDs, rDescs = InputRecomMLDefinition.exportPairOfRecomIdsAndRecomDescrs(
        )

        aDescDHont: AggregationDescription = InputAggrDefinition.exportADescDHondt(
            selector)

        pDescr: Portfolio1AggrDescription = Portfolio1AggrDescription(
            self.getBatchName() + jobID, rIDs, rDescs, aDescDHont)

        rIds: List[str] = pDescr.getRecommendersIDs()
        model: DataFrame = PModelHybrid(
            PModelDHondt(rIds), PModelDHondtPersonalisedStat(rIds), {
                PModelHybrid.ARG_MODE_SKIP: True,
                PModelHybrid.ARG_SKIP_CLICK_THRESHOLD: 3
            })

        simulator: Simulator = InputSimulatorDefinition().exportSimulatorML1M(
            batchID, divisionDatasetPercentualSize, uBehaviour, repetition)
        simulator.simulate([pDescr], [model], [eTool],
                           [HistoryHierDF(pDescr.getPortfolioID())])
Example #10
0
def test02():
    print("Test 02")

    rIDs, rDescr = InputRecomSTDefinition.exportPairOfRecomIdsAndRecomDescrs()

    model: DataFrame = PModelDHondt(rIDs)
    print(model)

    userID: int = 1

    rItemIDsWithResponsibility: List[(int, Dict)] = [(1, {
        rIDs[0]: 0.05,
        rIDs[1]: 0.05,
        rIDs[2]: 0.05,
        rIDs[3]: 0.05,
        rIDs[4]: 0.05,
        rIDs[5]: 0.05,
        rIDs[6]: 0.05,
        rIDs[7]: 0.65
    })]

    lrClick: float = 0.03
    lrView: float = lrClick / 500
    evalTool: AEvalTool = EvalToolDHondt({
        EvalToolDHondt.ARG_LEARNING_RATE_CLICKS:
        lrClick,
        EvalToolDHondt.ARG_LEARNING_RATE_VIEWS:
        lrView
    })
    evalTool.click(userID, rItemIDsWithResponsibility, 1, model, {})

    for i in range(555):
        evalTool.displayed(userID, rItemIDsWithResponsibility, model, {})

    print(model)
def test01():
    print("Test 01")

    rIDs, rDescs = InputRecomRRDefinition.exportPairOfRecomIdsAndRecomDescrs()

    mGlobal: DataFrame = PModelDHondt(rIDs)
    mPerson: DataFrame = PModelDHondtPersonalisedStat(rIDs)
    mh: DataFrame = PModelHybrid(mGlobal, mPerson)
    mh.getModel(1)
Example #12
0
    def __init__(self, recommendersIDs: List[str]):

        pM1: DataFrame = PModelDHondt(recommendersIDs)
        #print(pM1.head(10))

        modelDHontData = [[float('nan'), pM1]]
        super(PModelDHondtPersonalised,
              self).__init__(modelDHontData,
                             columns=[
                                 PModelDHondtPersonalised.COL_USER_ID,
                                 PModelDHondtPersonalised.COL_MODEL
                             ])
        self.set_index(PModelDHondtPersonalised.COL_USER_ID, inplace=True)
def test21():

    print("Simulation: ST ContextDHondtINF")

    jobID: str = "Roulette1"

    selector = RouletteWheelSelector({RouletteWheelSelector.ARG_EXPONENT: 1})

    #pProbToolOLin0802HLin1002:APenalization = PenalizationToolDefinition.exportProbPenaltyToolOStat08HLin1002(
    #    InputSimulatorDefinition.numberOfAggrItems)
    pToolOLin0802HLin1002: APenalization = PenalizationToolDefinition.exportPenaltyToolOLin0802HLin1002(
        InputSimulatorDefinition.numberOfAggrItems)

    rIDs, rDescs = InputRecomSTDefinition.exportPairOfRecomIdsAndRecomDescrs()

    dataset: ADataset = DatasetST.readDatasets()
    events = dataset.eventsDF
    serials = dataset.serialsDF

    historyDF: AHistory = HistoryDF("test01")

    # Init evalTool
    evalTool: AEvalTool = EvalToolContext({
        EvalToolContext.ARG_ITEMS:
        serials,  # ITEMS
        EvalToolContext.ARG_EVENTS:
        events,  # EVENTS (FOR CALCULATING HISTORY OF USER)
        EvalToolContext.ARG_DATASET:
        "st",  # WHAT DATASET ARE WE IN
        EvalToolContext.ARG_HISTORY:
        historyDF
    })  # empty instance of AHistory is OK for ST dataset

    pDescr: Portfolio1AggrDescription = Portfolio1AggrDescription(
        "ContextDHondtNIF" + jobID, rIDs, rDescs,
        InputAggrDefinition.exportADescDContextHondtINF(
            selector, pToolOLin0802HLin1002, evalTool))

    batchID: str = "stDiv90Ulinear0109R1"
    dataset: DatasetST = DatasetST.readDatasets()
    behaviourFile: str = BehavioursST.getFile(BehavioursST.BHVR_LINEAR0109)
    behavioursDF: DataFrame = BehavioursST.readFromFileST(behaviourFile)

    model: DataFrame = PModelDHondt(pDescr.getRecommendersIDs())
    print(model)

    # simulation of portfolio
    simulator: Simulator = Simulator(batchID, SimulationST, argsSimulationDict,
                                     dataset, behavioursDF)
    simulator.simulate([pDescr], [model], [evalTool],
                       [HistoryHierDF(pDescr.getPortfolioID())])
def test03():
    print("Test 03")

    # methods parametes
    portfolioModelData1: List[tuple] = [['metoda1', 100], ['metoda2', 80],
                                        ['metoda3', 60]]
    portfolioModel1: DataFrame = pd.DataFrame(portfolioModelData1,
                                              columns=["methodID", "votes"])
    portfolioModel1.set_index("methodID", inplace=True)
    portfolioModel1.__class__ = PModelDHondt

    #portfolioModel1.linearNormalizing()

    rModel = PModelDHondt.multiplyModel(portfolioModel1, 0.2)
    print(rModel)
    def run(self, batchID: str, jobID: str):

        divisionDatasetPercentualSize: int
        uBehaviour: str
        repetition: int
        divisionDatasetPercentualSize, uBehaviour, repetition = InputABatchDefinition(
        ).getBatchParameters(self.datasetID)[batchID]

        selector: ADHondtSelector
        selector, negativeImplFeedback = self.getParameters()[jobID]

        portfolioID: str = self.getBatchName() + jobID

        history: AHistory = HistoryHierDF(portfolioID)

        dataset: ADataset = DatasetST.readDatasets()
        events = dataset.eventsDF
        serials = dataset.serialsDF

        historyDF: AHistory = HistoryHierDF("test01")

        # Init evalTool
        evalTool: AEvalTool = EvalToolContext({
            EvalToolContext.ARG_ITEMS:
            serials,  # ITEMS
            EvalToolContext.ARG_EVENTS:
            events,  # EVENTS (FOR CALCULATING HISTORY OF USER)
            EvalToolContext.ARG_DATASET:
            "st",  # WHAT DATASET ARE WE IN
            EvalToolContext.ARG_HISTORY:
            historyDF
        })  # empty instance of AHistory is OK for ST dataset

        rIDs, rDescs = InputRecomSTDefinition.exportPairOfRecomIdsAndRecomDescrs(
        )

        aDescContextDHont: AggregationDescription = InputAggrDefinition.exportADescDContextHondtINF(
            selector, negativeImplFeedback, evalTool)

        pDescr: Portfolio1AggrDescription = Portfolio1AggrDescription(
            portfolioID, rIDs, rDescs, aDescContextDHont)

        model: DataFrame = PModelDHondt(pDescr.getRecommendersIDs())

        simulator: Simulator = InputSimulatorDefinition(
        ).exportSimulatorSlantour(batchID, divisionDatasetPercentualSize,
                                  uBehaviour, repetition)
        simulator.simulate([pDescr], [model], [evalTool], [history])
Example #16
0
    def run(self, batchID: str, jobID: str):

        divisionDatasetPercentualSize: int
        uBehaviour: str
        repetition: int
        divisionDatasetPercentualSize, uBehaviour, repetition = InputABatchDefinition(
        ).getBatchParameters(self.datasetID)[batchID]

        selector: ADHondtSelector
        negativeImplFeedback: APenalization
        selector, negativeImplFeedback = self.getParameters()[jobID]

        portfolioID: str = self.getBatchName() + jobID

        history: AHistory = HistoryHierDF(portfolioID)

        dataset: ADataset = DatasetML.readDatasets()
        usersDF = dataset.usersDF
        itemsDF = dataset.itemsDF

        # Init evalTool
        evalTool: AEvalTool = EvalToolContext({
            EvalToolContext.ARG_USERS:
            usersDF,
            EvalToolContext.ARG_ITEMS:
            itemsDF,
            EvalToolContext.ARG_DATASET:
            "ml",
            EvalToolContext.ARG_HISTORY:
            history
        })

        rIDs, rDescs = InputRecomMLDefinition.exportPairOfRecomIdsAndRecomDescrs(
        )

        aDescContextDHont: AggregationDescription = InputAggrDefinition.exportADescDContextHondtINF(
            selector, negativeImplFeedback, evalTool)

        pDescr: Portfolio1AggrDescription = Portfolio1AggrDescription(
            portfolioID, rIDs, rDescs, aDescContextDHont)

        model: DataFrame = PModelDHondt(pDescr.getRecommendersIDs())

        simulator: Simulator = InputSimulatorDefinition().exportSimulatorML1M(
            batchID, divisionDatasetPercentualSize, uBehaviour, repetition)
        simulator.simulate([pDescr], [model], [evalTool], [history])
def test01():

    print("Simulation: ML ContextDHondtINF")

    jobID: str = "Roulette1"

    selector = RouletteWheelSelector({RouletteWheelSelector.ARG_EXPONENT: 1})

    #pProbToolOLin0802HLin1002:APenalization = PenalizationToolDefinition.exportProbPenaltyToolOStat08HLin1002(
    #    InputSimulatorDefinition.numberOfAggrItems)
    pToolOLin0802HLin1002: APenalization = PenalizationToolDefinition.exportPenaltyToolOLin0802HLin1002(
        InputSimulatorDefinition.numberOfAggrItems)

    itemsDF: DataFrame = Items.readFromFileMl1m()
    usersDF: DataFrame = Users.readFromFileMl1m()

    historyDF: AHistory = HistoryDF("test01")

    eTool: AEvalTool = EvalToolContext({
        EvalToolContext.ARG_USERS: usersDF,
        EvalToolContext.ARG_ITEMS: itemsDF,
        EvalToolContext.ARG_DATASET: "ml",
        EvalToolContext.ARG_HISTORY: historyDF
    })

    rIDs, rDescs = InputRecomSTDefinition.exportPairOfRecomIdsAndRecomDescrs()

    pDescr: Portfolio1AggrDescription = Portfolio1AggrDescription(
        "ContextDHondtINF" + jobID, rIDs, rDescs,
        InputAggrDefinition.exportADescDContextHondtINF(
            selector, pToolOLin0802HLin1002, eTool))

    batchID: str = "ml1mDiv90Ulinear0109R1"
    dataset: DatasetML = DatasetML.readDatasets()
    behaviourFile: str = BehavioursML.getFile(BehavioursML.BHVR_LINEAR0109)
    behavioursDF: DataFrame = BehavioursML.readFromFileMl1m(behaviourFile)

    model: DataFrame = PModelDHondt(pDescr.getRecommendersIDs())

    # simulation of portfolio
    simulator: Simulator = Simulator(batchID, SimulationML, argsSimulationDict,
                                     dataset, behavioursDF)
    simulator.simulate([pDescr], [model], [eTool],
                       [HistoryHierDF(pDescr.getPortfolioID())])
Example #18
0
    def recommend(self, userID: int, portFolioModel: DataFrame,
                  argumentsDict: Dict[str, object]):
        #print("userID: " + str(userID))
        if type(userID) is not int and type(userID) is not np.int64:
            raise ValueError("Argument userID isn't type int.")
        if not isinstance(portFolioModel, DataFrame):
            raise ValueError("Argument portFolioModel isn't type DataFrame.")
        if type(argumentsDict) is not dict:
            raise ValueError("Argument argumentsDict isn't type dict.")

        currentItemID: int = argumentsDict[self.ARG_ITEM_ID]
        numberOfRecomItems: int = argumentsDict[
            self.ARG_NUMBER_OF_RECOMM_ITEMS]
        numberOfAggrItems: int = argumentsDict[self.ARG_NUMBER_OF_AGGR_ITEMS]

        arguments2Dict: Dict[str, object] = {}
        #arguments2Dict.update(self._recomDesc.getArguments())
        arguments2Dict.update(argumentsDict)

        # creates model if doesn't exist
        modelOfUserID: DataFrame = portFolioModel.getModel(userID)

        if portFolioModel.loc[
                userID, PModelDHondtPersonalisedStat.COL_CLICK_COUNT] < 1:
            print("ahoj franto")
            itemIDsWithResponsibility: Series = self._recommender.recommend(
                userID,
                numberOfItems=numberOfRecomItems,
                argumentsDict=arguments2Dict)
            recomItemIDs: List[int] = list(
                int(itemIdI) for itemIdI in itemIDsWithResponsibility.index)
            a = PModelDHondt.getEqualResponsibilityForAll(
                recomItemIDs, self.getRecommIDs())
            print("recomItemIDs: " + str(recomItemIDs))
            print("aaa: " + str(a))
            return (recomItemIDs, a)
        print("cus franto")

        aggItemIDs, aggItemIDsWithResponsibility = self._portfolioInternal.recommend(
            userID, portFolioModel, argumentsDict)

        # Tuple
        return (aggItemIDs, aggItemIDsWithResponsibility)
def test21():

    print("Simulation: ST FuzzyDHondtINF")

    jobID: str = "Roulette1"

    selector = RouletteWheelSelector({RouletteWheelSelector.ARG_EXPONENT: 1})

    #pProbToolOLin0802HLin1002:APenalization = PenalizationToolDefinition.exportProbPenaltyToolOStat08HLin1002(
    #    InputSimulatorDefinition.numberOfAggrItems)
    pToolOLin0802HLin1002: APenalization = PenalizationToolDefinition.exportPenaltyToolOLin0802HLin1002(
        InputSimulatorDefinition.numberOfAggrItems)

    rIDs, rDescs = InputRecomSTDefinition.exportPairOfRecomIdsAndRecomDescrs()

    pDescr: Portfolio1AggrDescription = Portfolio1AggrDescription(
        "FuzzyDHondtINF" + jobID, rIDs, rDescs,
        InputAggrDefinition.exportADescDHondtINF(selector,
                                                 pToolOLin0802HLin1002))

    batchID: str = "stDiv90Ulinear0109R1"
    dataset: DatasetST = DatasetST.readDatasets()
    behaviourFile: str = BehavioursST.getFile(BehavioursST.BHVR_LINEAR0109)
    behavioursDF: DataFrame = BehavioursST.readFromFileST(behaviourFile)

    model: DataFrame = PModelDHondt(pDescr.getRecommendersIDs())
    print(model)

    lrClick: float = 0.1
    lrView: float = lrClick / 300
    evalTool: AEvalTool = EvalToolDHondt({
        EvalToolDHondt.ARG_LEARNING_RATE_CLICKS:
        lrClick,
        EvalToolDHondt.ARG_LEARNING_RATE_VIEWS:
        lrView
    })

    # simulation of portfolio
    simulator: Simulator = Simulator(batchID, SimulationST, argsSimulationDict,
                                     dataset, behavioursDF)
    simulator.simulate([pDescr], [model], [evalTool],
                       [HistoryHierDF(pDescr.getPortfolioID())])
Example #20
0
def test31():

    print("Simulation: RR FuzzyDHondt")

    lrClick: float = 0.03
    #lrView:float = lrClick / 300
    lrViewDivisor: float = 250

    jobID: str = "Fixed" + "Clk" + str(lrClick).replace(
        ".", "") + "ViewDivisor" + str(lrViewDivisor).replace(".", "")

    selector: ADHondtSelector = TheMostVotedItemSelector({})

    rIDs, rDescs = InputRecomRRDefinition.exportPairOfRecomIdsAndRecomDescrs()

    pDescr: Portfolio1AggrDescription = Portfolio1AggrDescription(
        "FDHondt" + jobID, rIDs, rDescs,
        InputAggrDefinition.exportADescDHondt(selector))

    batchID: str = "rrDiv90Ulinear0109R1"
    dataset: DatasetRetailRocket = DatasetRetailRocket.readDatasetsWithFilter(
        minEventCount=50)
    behaviourFile: str = BehavioursRR.getFile(BehavioursRR.BHVR_LINEAR0109)
    behavioursDF: DataFrame = BehavioursRR.readFromFileRR(behaviourFile)

    model: DataFrame = PModelDHondt(pDescr.getRecommendersIDs())
    print(model)

    evalTool: AEvalTool = EvalToolDHondt({
        EvalToolDHondt.ARG_LEARNING_RATE_CLICKS:
        lrClick,
        EvalToolDHondt.ARG_LEARNING_RATE_VIEWS:
        lrClick / lrViewDivisor
    })

    # simulation of portfolio
    simulator: Simulator = Simulator(batchID, SimulationRR, argsSimulationDict,
                                     dataset, behavioursDF)
    simulator.simulate([pDescr], [model], [evalTool],
                       [HistoryHierDF(pDescr.getPortfolioID())])
Example #21
0
def test01():

    print("Simulation: ML ContextFuzzyDHondtDirectOptimize")

    jobID: str = "Roulette1"

    selector: ADHondtSelector = RouletteWheelSelector(
        {RouletteWheelSelector.ARG_EXPONENT: 1})

    itemsDF: DataFrame = Items.readFromFileMl1m()
    usersDF: DataFrame = Users.readFromFileMl1m()

    historyDF: AHistory = HistoryHierDF("test01")

    eTool: AEvalTool = EvalToolContext({
        EvalToolContext.ARG_USERS: usersDF,
        EvalToolContext.ARG_ITEMS: itemsDF,
        EvalToolContext.ARG_DATASET: "ml",
        EvalToolContext.ARG_HISTORY: historyDF
    })

    rIDs, rDescs = InputRecomSTDefinition.exportPairOfRecomIdsAndRecomDescrs()

    pDescr: Portfolio1AggrDescription = Portfolio1AggrDescription(
        "ContextFuzzyDHondtDirectOptimize" + jobID, rIDs, rDescs,
        InputAggrDefinition.exportADescContextFuzzyDHondtDirectOptimize(
            selector, eTool))

    batchID: str = "ml1mDiv90Ulinear0109R1"
    dataset: DatasetML = DatasetML.readDatasets()
    behaviourFile: str = BehavioursML.getFile(BehavioursML.BHVR_LINEAR0109)
    behavioursDF: DataFrame = BehavioursML.readFromFileMl1m(behaviourFile)

    model: DataFrame = PModelDHondt(pDescr.getRecommendersIDs())

    # simulation of portfolio
    simulator: Simulator = Simulator(batchID, SimulationML, argsSimulationDict,
                                     dataset, behavioursDF)
    simulator.simulate([pDescr], [model], [eTool], [historyDF])
Example #22
0
    def run(self, batchID:str, jobID:str):

        divisionDatasetPercentualSize:int
        uBehaviour:str
        repetition:int
        divisionDatasetPercentualSize, uBehaviour, repetition = InputABatchDefinition().getBatchParameters(self.datasetID)[batchID]

        selector, nImplFeedback = self.getParameters()[jobID]

        eTool:AEvalTool = EvalToolDHondt({EvalToolDHondt.ARG_LEARNING_RATE_CLICKS: 0.02,
                                           EvalToolDHondt.ARG_LEARNING_RATE_VIEWS: 1000})

        rIDs, rDescs = InputRecomMLDefinition.exportPairOfRecomIdsAndRecomDescrs()

        aDescFuzzyHontDirectOptimizeINF:AggregationDescription = InputAggrDefinition.exportADescDFuzzyHondtDirectOptimizeINF(selector, nImplFeedback)

        pDescr:Portfolio1AggrDescription = Portfolio1AggrDescription(
            self.getBatchName() + jobID, rIDs, rDescs, aDescFuzzyHontDirectOptimizeINF)

        model:DataFrame = PModelDHondt(pDescr.getRecommendersIDs())

        simulator:Simulator = InputSimulatorDefinition().exportSimulatorML1M(
                batchID, divisionDatasetPercentualSize, uBehaviour, repetition)
        simulator.simulate([pDescr], [model], [eTool], [HistoryHierDF(pDescr.getPortfolioID())])
def test01():
    print("Test 01")

    m = PModelDHondt(["r1", "r2"])
    print(m.head(10))